endorsed for

edexcel st

N\

Edexcel A level Further Mathematics

Core Pure Mathematics

Book 2

Series Editor: Harry Smith
Authors: Greg Attwood, Jack Barraclough, Ian Bettison, Lee Cope, Alistair Macpherson,
Bronwen Moran, Johnny Nicholson, Laurence Pateman, Joe Petran, Keith Pledger,

Harry Smith, Geoff Staley, Dave Wilkins

P Pearson



Published by Pearson Education Limited, 80 Strand, London WC2R ORL.

www.pearsonschoolsandfecolleges.co.uk

Copies of official specifications fer all Pearson qualifications may be found on the website:
qualifications.pearson.com

Text © Pearson Education Limited 2018

Edited by Tech-Set Ltd, Gateshead

Typeset by Tech-Set Ltd, Gateshead

Original illustrations © Pearson Education Limited 2018
Cover illustration Marcus@kja-artists

The rights of Greg Attwood, Jack Barraclough, lan Bettison, Lee Cope, Alistair Macpherson,
Bronwen Moran, Johnny Nicholson, Laurence Pateman, Joe Petran, Keith Pledger, Harry Smith,
Geoff Staley, Dave Wilkins to be identified as authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988,

First published 2018

21201918
10987654321

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 978 1 292 183343

Copyright notice

All rights reserved. No part of this publication may be reproduced in any form or by any means
(including photocopying or storing it in any medium by electronic means and whether or not
transiently or incidentally to seme other use of this publication) without the written permission
of the copyright owner, except in accordance with the provisions of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency,
Barnards Inn 86 Fetter Lane, London EC4A 1EN (www.cla.co.uk). Applications for the copyright
owner’s written permission should be addressed to the publisher.

Printed in the UK by Bell & Bain Ltd, Glasgow

Acknowledgements
The authors and publisher would like to thank the following for their kind permission to
reproduce their photographs:

(Key: b-bottom; c-centre; |-left; r-right; t-top)

123RF: 170, 196r, Cobalt 77, 93r, Alamy Stock Photo: NASA Photo 52, 93cr, Getty Images:
SteveDF 1,93 |, SCIENCE PHOTO LIBRARY: Andrew Brookes, National Physical Laboratory 31, 93¢/,
Shutterstock: Tyler Olson 100, 196l, Spacedrone808 119, 196¢l, Tatiana Shepeleva 147, 196¢r.

All other images © Pearson Education

A note from the publisher

In order to ensure that this resource offers high-quality support for the associated Pearson
qualification, it has been through a review process by the awarding body. This process confirms
that this resource fully covers the teaching and learning content of the specification or part

of a specification at which it is aimed. It also confirms that it demonstrates an appropriate
balance between the development of subject skills, knowledge and understanding, in addition
to preparation for assessment.

Endorsement does not cover any guidance on assessment activities or processes (e.g. practice
questions or advice on how to answer assessment guestions), included in the resource nor does
it prescribe any particular approach to the teaching or delivery of a related course.

While the publishers have made every attempt to ensure that advice on the qualification

and its assessment is accurate, the official specification and associated assessment guidance
materials are the only authoritative source of information and should always be referred to for
definitive guidance.

Pearson examiners have not contributed to any sections in this resource relevant to
examination papers for which they have responsibility.

Examiners will not use endorsed resources as a source of material for any assessment set by
Pearson.

Endorsement of a resource does not mean that the resource is required to achieve this Pearson
qualification, nor does it mean that it is the only suitable material available to support the
qualification, and any resource lists produced by the awarding body shall include this and
other appropriate resources.

Pearson has robust editorial processes, including answer and fact checks, to ensure the
accuracy of the content in this publication, and every effort is made to ensure this publication
is free of errors. We are, however, only human, and occasionally errors do occur, Pearson is not
liable for any misunderstandings that arise as a result of errors in this publication, but it is
our prierity to ensure that the content is accurate, If you spot an error, please do contact us at
resourcescorrections@pearson.com so We can make sure it is corrected.



. Contents

Overarching themes iv 5 Polar coordinates 100
T Tm— - 5.1 Polar coordinates and equations 101

5.2  Sketching curves 104
1 Complex numbers 1 5.3 Area enclosed by a polar curve 109
1.1  Exponential form of complex numbers 2 5.4  Tangents to polar curves 113
1.2 Multiplying and dividing complex Mixed exercise 5 116

numbers 5

1% Do MohicEihsnian 6 Hyperbolic functions 119

6.1 Introduction to hyperbolic functions 120

1.4 Trigonometric identities 11
18 Cumsofserias 16 6.2 Inverse hyperbolic functions 123
1.6 nthroots of a complex number 20 6.3  Identities and equations 1
1.7 Solving geometric problems 25 6.4 Differentiating hyperbolic functions 130
Mixed exercise 1 >7 6.5 Integrating hyperbolic functions 135
Mixed exercise 6 142
2 Series 31
21 The method of differences 32 7 Methods in differential equations 147
2.2 Higher derivatives 38 7.1 First-order differential equations 148
I — 40 1.2 Seconfj—order homogeneous differential
2.4 Series expansions of compound FRUARaRs 15
F— 44 7.3 SIecond-({nrder non_-homogeneous
Mised axeiciea s 48 differential equations 157
7.4 Using boundary conditions 162
3 Methods in calculus 52 Mixed exercise 7 165
j; _Irn;sr;zz::;{fugz:? o Function 22 Modelling with differential equations 170

8.1 Modelling with first-order differential
equations 171

8.2 Simple harmonic motion 175

3.3 Differentiating inverse trigonometric
functions 62

3.4 |Integrating with inverse trigonometric _ :
8.3 Damped and forced harmonic motion 180

functions 65
3.5 Integrating using partial fractions 69 8.4 C9UPIEd ﬁrst-ordgr simultaneous
; ; differential equations 186
Mixed exercise 3 74
Mixed exercise 8 191
4 Volumes of revolution 77 . .
: . Review exercise 2 196
4.1  Volumes of revolution around the x-axis 78
4.2 Volumes of revolution around the y-axis 81 Exam-style practice: Paper 1 209

4.3  Volumes of revolution of parametrically

defined curves 83 Exam-style practice: Paper 2 211
4.4 Modelling with volumes of revolution 87

Mixed exercise 4 89 Answers 213

Review exercise 1 93 Index 256



Overarching themes

. Overarching themes

The following three overarching themes have been fully integrated throughout the Pearson Edexcel
AS and A level Mathematics series, so they can be applied alongside your learning and practice.

1. Mathematical argument, language and proof

Rigorous and consistent approach throughout

Notation boxes explain key mathematical language and symbols

Dedicated sections on mathematical proof explain key principles and strategies

Opportunities to critique arguments and justify methods

2. Mathematical problem solving The Mathematical Problem-solving cycle
» Hundreds of problem-solving questions, fully integrated specify the problem [
into the main exercises
* Problem-solving boxes provide tips and strategies interpret results o
‘ . collect information
» Structured and unstructured questions to build confidence M
» Challenge boxes provide extra stretch process and
represent information g

3. Mathematical modelling
» Dedicated modelling sections in relevant topics provide plenty of practice where you need it

» Examples and exercises include qualitative questions that allow you to interpret answers in the
context of the model

» Dedicated chapter in Statistics & Mechanics Year 1/AS explains the principles of modelling in
mechanics

Finding your way around the book Access an online
digital edition using
the code at the
front of the book.

Modelling with
8 differential equations
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. of the maths you are about
BESE-—— to learn are highlighted at
the start of the chapter with
links to relevant questions in
the chapter

The Prior knowledge check
helps make sure you are
ready to start the chapter



Overarching themes

Exercise questions
are carefully graded
so they increase

in difficulty and
gradually bring you
up to exam standard
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Problem-solving boxes
provide hints, tips and
strategies, and Watch
out boxes highlight
areas where students
often lose marks in their
exams

Step-by-step
worked examples
focus on the key
types of questions
you'll need to
tackle

Each chapter
ends with a
Mixed exercise
and a Summary
of key points
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the back of the book help you
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Extra online content

. Extra online content

Whenever you see an Online box, it means that there is extra online content available to support you.

Biffargntiation 124
(TR " S —

SolutionBank

SolutionBank provides a full worked solution for
every question in the book.

@ Full worked solutions are #

available in SolutionBank.

Download all the solutions as a PDF or
quickly find the solution you need online

Use of technology

Explore topics in more detail, visualise @ Find the point of intersection O

problems and consolidate your understanding graphically using technology.
using pre-made GeoGebra activities.

GeaGebra

GeoGebra-powered interactives

Interact with the maths you are learning ___—
using GeoGebra's easy-to-use tools

Access all the extra online content for free at:

www.pearsonschools.co.uk/cp2maths

You can also access the extra online content by scanning this QR code:

i



Complex numbers

Objectives

After completing this chapter you should be able to:

Express a complex number in exponential form -» pages 2-5
Multiply and divide complex numbers in exponential form - pages 5-8
Understand de Moivre's theorem - pages 8-11
Use de Moivre’s theorem to derive trigonometric identities - pages 11-15
Use de Moivre's theorem to find sums of series -» pages 16-19

Know how to solve completely equations of the form z# —a — ib =0,
giving special attention to cases wherea=1and b=0 -» pages 20-25

® Use complex roots of unity to solve geometric problems -» pages 25-27

-0.02;

' "*.'* LA T
& L

Prior knowledge check

o ey _ T el B
z= 4+ 4iV3and w = 2(c056 +isin 6)'
Find:

alzl barglz) c |zw d arg(zw)

f arg(%) « Book 1, Chapter 2

2 f(2)=z44+42492244248

Given that z =i is a root of f(z) = 0, show
all the roots of f(z) = 0 on an Argand
diagram. « Book 1, Chapters 1,2 | __J"

The relationships between complex numbers
and trigonometric functions allow electrical
engineers to analyse oscillations of voltage
and current in electrical circuits more easily.

3 Use the binomial expansion to find the
n* term in the expansion of (2 + n)°.
¢« Pure Year 1, Chapter 8




Chapter 1

m Exponential form of complex numbers

You can use the modulus—argument form of a
complex number to express it in the exponential
form: z = re

The modulus-argument form of
a complex number is z = r(cos 8 + isin §),
where r=|z| and § = arg z.

: . : , ’ + Book 1, Section 2.3
You can write cos ¢ and sin # as infinite series of powers

of 0:
02 04 6° (1) o
sf=l-—t—=-—+ ...+ —7—— 1
2! 41 6! (2! @
) 0 05 0 (=1)" gr+1
0=0-—~+——-—+...+———— 2
= ETIMCTINE TR 7P 1T @
You can also write e, x € R, as a series expansion in These are the Maclaurin series
powers of x. expansions of sin 6, cos # and e-.
2 43 4 5 -r = Chapter 2
e-"=1+.r+%+;7+%+;—!+...+%+... ;

You can use this expansion to define the exponential
function for complex powers, by replacing x with a
complex number. In particular, if you replace x with
the imaginary number i6, you get
(i6)%  (0)*  (0) (i6)>  (i0)°

2 Tar YA e sl

ef=1+i0+

wa . BOE PO 9% . iPR° . i%0°
=1 Hl St et e

6> i 0% 0> 68

=1+19—"2T—*3—|— ZT ST_§+
gz @4 @° : 0 0°
= 1”E+H"E+'“)+I(G-ﬁ+ﬁ_

By comparing this series expansion with (1) and (2), you can write e'’ as

el = cosf +isinf This formula is known as Euler’s relation.
It is important for you to remember this result.

= You can use Euler’s relation, e = cos 0 + isin 6, Substituting 8 = i Into Euler's

to write a complex number 7 in exponential relation yields Euler’s identity:
form: S T=0
z = rel?

This equation links the five fundamental
wherer=|z| and 0 = arg z. constants 0, 1, m, e and i, and is considered
an example of mathematical beauty.



Complex numbers
Example o

Express the following in the form re, where -7 < < 7.

T .. M T e AT
a -—v’f(cosm+1smlo) b "_5(0098"15“18 )
az= \.-"'2(505% + isin %) | Compare with r(cos# + isin 6).
e B _ T
Sor=v2 and 10
Therefore, z = \""26’:1:5 z=re¥
bz= 5(605;% — isin g) Problem-solving
. 5(035(_%_) aEay (_g)) Use cos (—#) = cos @ and sin (—6) = —sin 6.
Sor=5andf = -% _ Compare with r(cos # + isin 6).
Therefore, z = S5e @ z= rel,

Express z = 2 - 3i in the form re'’, where -7 < 0 < 7.

Im
o Sketch the Argand diagram, showing the position
2 of the complex number.
oN\e/ L I:Qe
roi3
! Here z is in the fourth quadrant so the required
P argument is —cv.
r=lzl=v22 + (=32 =13
+— Find r and 4.
# = argz = —arctan (%) =-0.963 (3 s.t) -
Therefore, z = v13e79283, ' z=rel,



Example o

Ami

Express z = v2e 4 in the form x + iy, where x, y € R.

3x)

Compare with re'.

Write z in modulus-argument form.

z=V2e4,s50r= @andé‘:%
z= v“?(co&“?f + isin 3;?)
T 1 :
= V2(—= + i—=
" ( V2 l\/2)
Therefore, z= -1 41

SET T (E o

23mi

Simplify.

Express z =2e 5 in the form r(cos @ + isin @), where -7 < 0 < 7.

Compare with re”.

23x
::28-5_50,_223nd922§w
23w _ ,__ 13w 137 _ 3
5 2n = 55 2T = B
3r . .
g15|ntheranqe—rr<ﬂfi~'7r

3r

Problem-solving

cos f! = cos (0 + 2m) and sin # = sin (6 + 27).
23r

Subtract multiples of 2r from s

until you find a

Soz=2 cos% + i5in?)

L value in the range -7 < f < 7.

Write z in the form r(cos # + isin #).

Use ¢ = cos # + isin 6 to show that cos0 = %(ei” +.¢79),

Use cos (=) = cos @ and sin (=) = =sin 4.

L Add (1) and (2).

e’ =cosf +isinf (1)
e = e = cos (~0) + isin(-6)

So e =cosf —isinf (2)
e+ e =2cos0

= e—m-ﬂéﬂ =cosf

Hence. cos f = %{e”’ + &™), as required.

L Divide both sides by 2.



Complex numbers
Exercise @

1 Express the following in the form re'”, where - < # < 7. Use exact values of r and # where

possible, or values to 3 significant figures otherwise.

a -3 b 6i c -2v3-2i
d -8+i e 2-5i f -2/3+2iV3
g v’ﬁ(cos%+isin%) h S(COS%—iSin%) i 2(005?51—isin—?5£)

2 Express the following in the form x + iy where x, y € R.

il il

ae’ b 4e™ c 3/2et
i i Smi
d 8¢t e 3e 2 f e¢
. _ 3mi 4
g e h 3v2e 4 i 8 3

3 Express the following in the form r(cos @ + isin #), where -7 < 0 = 7,

167i 17xi 9
ael b 4e > c S5e 8

® 4 Use e’ = cosf + isin f to show that sinf = -21—1 (et =igif),

Multiplying and dividing complex numbers

You can apply the modulus—argument rules for multiplying and dividing complex numbers to
numbers written in exponential form.

Recall that, for any two complex numbers z; and z,,

* 2125 = |21]|Z|

® arg(z,z;) =arg(z,) +arg(z, :
) lf . . These results can be proved by
k= (- (] considering the numbers z, and z, in the form
Z2l 17 r(cos @ + isin @) and using the addition formulae

for cos and sin. + Book 1, Section 2.3

=

« arg(2) =arg ey - arg e

Applying these results to numbers in exponential form gives the following result:

® If z, = r;e'% and z, = r,e%, then:
' LELGEINS Vou cannot automatically assume
¢ 2325 = ryrpeiti+ 0 the laws of indices work the same way with
, complex numbers as with real numbers. This
i Eeim‘"&‘] result only shows that they can be applied in

these specific cases.



Example o

a Express 2e® x v/3e" in the form x + iy.

b z=2+2i, Im(zw) = 0 and |zw| = 3|z]
Use geometrical reasoning to find the two possibilities for w, giving your answers in exponential

form.
a 2t xV3e’ =(2 x y3)eli*d | 2425 = Fyrpeltitt)
= evde Simplify.
= 2\.-"'3(cos-"'-T— +isin”)
2 2 Convert the complex number to modulus—
= 2V3(0 + i) argument form.
= 23
b |zw| =3|z| = |w| =3 [zw] = |2][w] = 3]z
argz = arctan (g) =X
qz= 2]~ 4
Im(zw) = O so arg(zw) = O or 7 3
¥ ¥ i s
S = wz lies on the real axis, so z is rotated —
So argw = 2 o ~2 _ = 4
| clockwise ory anticlockwise when multiplied by w.
R
JZ=2 i
3r
zw, il ',*' Z W,
) 0 " Re
w, = 3¢ and w, = 3e*
Example o
m s o AT
2((:05— +1sin —)
12 124 .. ”
Express in the form re”.
\e"rf(coss—‘JT + isin—ﬂ)
6 6
2 _ﬂ—_ + isi _E =)
(COS12 ' 12) _ 2e” Convert the numerator and denominator to
%#.2.(wsﬁ . iBmﬁ) (Bt exponential form.
6 &
- i A -7 ?=r_1eiwra;j
V2 Z; I3
- ,2 e tlf
i L Simplify.



Complex numbers

1 Express the following in the form x + iy, where x, y € R.

_.ri m y " l_ri _Tln m
a e'xe? b vSel? x 3e3 ¢ V2e7 xe 7 x3ef

2 Express the following in the form x + iy where x, y € R.

Ini n _lssl
2e? b '.,Jr?_)ej Qe 6 = E."'S.L’
a 2 P
8e? 4e 7 2e?

3 Express the following in the form re®.

a (cos 26 + isin 20)(cos 36 + isin 36) b (cos?fl + isin %U(cos%+isin?—?
c 3(cos4+1sm )x2( %+1qm 12)
d u‘%(cos( IZ)-!-ISII‘! ) cos%+isin%)

4 Express the following in the form re'’.

(s LY T o T

o G050+ isin 50 i ﬁ(cosz-msmz) 3(0033 +isin 3)
is l T .. T TR

cos 260 + 1sin 20 E(COSZ+ISIHZ) 4(005%4.15“,1%7)

5 zand w are two complex numbers where z =

|=y3andargw= %

Express the following in the form re”, where -7 < 0 = 7.

[ta

a:z b w C zw d

@ 6 Use the exponential form for a complex number to show that

(cos 90 + 1sin 90)(cos 40 + 1sin 40)
cos 76 + 1sin 760

= co0s 60 + isin 60

E®) 7 :=1+w’§,Re(-f§):0and|§§ =z

Use geometrical reasoning to find the two possibilities for w, giving your answers in exponential

form. (4 marks)
8 a Evaluate (1 + 1)%, giving your answer in exponential form. (2 marks)
b Use mathematical induction to prove that (1 + )" = et forn € Z*. (4 marks)
¢ Hence find (1 + i)'°, (1 mark)

® 9 Use Euler’s relation for ¢ and e-* to verify that cos?6 + sin2f = 1.



Chapter 1

Challenge m You cannot assume

a Given that n is a positive integer, prove by induction that that the laws of indices will apply to
(reit)” = p"n? complex numbers. Prove these results

1 using only the properties
b Given further that =" = — for all z € C, show that

. = il
o s 2,2, = ryr el
(reit) ™" = p " "

. F
i _1€i:y1-eg

Z I

@ De Moivre’s theorem

You can use Euler's relation to find powers of complex numbers given in modulus—argument form.
(rlcos 0 + isin 0)° = (re’®)?
=rel x reV
= j2pi2t
= r2lcos 20 + isin 26)
Similarly, (ricos @ + isin #)* = *(cos 36 + isin 36), and so on.
The generalisation of this result is known as de Moivre’s theorem:

= For any integer n,
(rlcos 8 + isin 0)" = r"(cos nO + isin nb)

You can prove de Moivre's theorem quickly using Euler’s relation.

(rlcos @ +isin )" = (rei)" . m— .
This step is valid for any integer

= e].-r(i i
exponent n. < Exercise 1B, Challenge

= rcos nf + isin nb)

You can also prove de Moivre's theorem for positive @ IR oot ies the methon
integer exponents directly from the modulus— of proof by induction

argument form of a complex number using the addition « Book 1, Chapter 8
formulae for sinand cos.

1. Basis step

n=1; LHS = (r(cos @ + isin ) = r(cos f + isin )
RHS = r(cos 10 + isin 10) = r(cos @ + isin &)

As LHS = RHS, de Moivre's theorem is true forn = 1.

2. Assumption step

Assume that de Moivre's theorem is true forn=k ke Z*:
(r(cos @ + isin 6))* = r*(cos k6 + isin k)



Complex numbers

3. Inductive step

Whenn =k + 1,

(r(cos 0 + isin 0))F*' = (r(cos O + isin §))F x r(cos O + isin )
= rk(cos k) + isinkf) x r(cosd + isin )
= r¥+1(cos kf + isin kf)(cos @ + isin )
= rk+1((cos k) cos 0 — sin k@ sin 6) + i(sin k6 cos & + cos k) sin 0))
= rk+l(cos(kf + 0) + isin(kO + 0))
= rk+1(cos((k + 1)) + isin((k + 1)0))

Therefore, de Moivre's theorem is true when n = k + 1.

By assumption step

By addition formulae

4. Conclusion step

If de Moivre’s theorem is true for n = k, then it has been The corresponding proof
shown to be true forn=k + 1. for negative integer exponents is

left as an exercise.

As de Moivre's theorem is true for n = 1, it is now proven to s Exercise 1C, Challsnge

be true for all n € Z* by mathematical induction.

91T)5

COs ?7 + isin 17

Simplify =
(cos =L _ isin 21)
17 17

Problem-solving

(CDS?—?-FIE;IH?—.;—) i -
_ You could also show this result by writing both
(cos ‘$—7T - isin 127) numbers in exponential form:
971\ 5 45nl
(coea?—_:,rrk |5m19;,1-) (e¥) Bl =5 _ g3 2 @m = -

= _le 3 1

(cos(~22) + isin( -22) )3 ) e

Co5 17 I1Sin 17 L

Cosﬁi_ " 1~5mi5-—7r— cos (=f) = cos @ and sin (=) = —=sin @
COS( -%;r) + iSiﬂ( -?—;E) L Apply de Moivre's theorem to both the numerator

and the denominator.
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;—;=cos (0, — 0,) + isin (6, — 6,)

= cos 17 “+ i5in—17—

= cos 3w + isin 37 Simplify.

=cosT+isinT l

Subtract 27 from the argument.
= =1 + i(0) s &
(“’5 o kd ”%‘r)ﬁ
S50 = -]
(cosg —isin 2“)

17 17




Example o

Express (1 +iy3)’ in the form x + iy where x, y € R.

First, you need to find the modulus and argument
of 1 +iV3. You may want to draw an Argand
diagram to help you.

[m 4

|

; I..-":']2 e [‘.3 JE = \,";4 =2
@) i | Find r and #.

8 = arctan (

So1+i3 = 2(::05 ----- + isin%)

Write 1 + i3 in modulus-argument form.

= 27(505 3 + |5m%) Apply de Moivre's thearem.
= 128 cosg ising ) Subtract 2 from the argument.

1+45)

Therefore, (1 + V3 ]? =G4 + G4iV/3

Exercise @

1 Use de Moivre’s theorem to express each of the following in the form x + iy, where x, y € R.

|
el

a (cosf +isin ) b (cos 36 + isin 39)* ¢ (cos%+isin%)5
8 2 g _23-1-_)5 15
d (cos3+1sm3] e | cos 3 + 181n 5 f (cos 10 1511110)

2 Express each of the following in the form e’

o 0830+ isin 56 (cos 20 + isin 26)’ . 1
(cos 26 + isin 20)> (cos 40 + isin 40) (cos 20 + isin 20)°
(cos 20 + isin 20)* cos 56 + isin 50 cosf —isinf
cos 360 + isin 30)° ? (cos 36 — isin 30)? (cos 26 — isin 20)?
( )

10



Complex numbers

3 Evaluate the following, giving your answers in the form x + iy, where x, y € R.

( E—i inﬁl—)4 ( 3—ﬂ-—i in“—ﬂ)R ( 4—ﬂ—i inﬁ)?
cos 3 —ising3 cos =~ —isin— cos 3~ —isin =
P oo 22, 2 loos 2% 15 4]
cos 3 +isin3 cos == +isin cos 3~ +isin 3
4 Express the following in the form x + iy where x, y € R.
a (1+i1y b (-2 + 2i)® ¢ (1-1)°
d (1-iv3) e (3-3iv3) £ (-2v3-2i)°
® 5 Express (3 +1v/3)” in the form a + biy'3 where @ and b are integers. (2 marks)
T .. T
@ 6 w= 2(003 6 + 131116)
Find the exact value of w4, giving your answer in the form « + ib where a, b € R. (2 marks)
Ny L R EE)
® 7:= \-3(cos 7 isin
Find the exact value of z® giving your answer in the form a + ib where a, b € R. (3 marks)
. ."l'_
(E/P) 8 a Express = 2 in the form re'’, where r > 0 and —7 < 0 < . (3 marks)

._.1\|."

b Hence find the smallest positive integer value of n for which (l - Ifﬁ) s real
— 1y

and positive. (2 marks)
9 Use de Moivre’s theorem to show that (a + bi)" + (a — bi)" is real for all integers n. (5 marks)
Challenge Problem-solving
Without using Euler’s relation, prove that if n is a positive integer, You may assume de Moivre’s
(rlcos 6 + isin O™ = r~"(cos (~n@) + i sin (~nd) theorem for positive integer

exponents, but do not write
any complex numbers in
exponential form.

@ Trigonometric identities

You can use de Moivre’s theorem to derive trigonometric identities.

Applying the binomial expansion to (cos @ + isin #)" allows you to express cos nfl in terms of powers of
cos @, and sinnf in terms of powers of sin .

BULEY @+ b)"=a" +"Ca" b +"Cra2b2 + ... +"Coa™" b + ...+ b nEN

where "C, = (f) = ,!(nn!_ )l

« Pure Year 1, Chapter 8
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Example @

Use de Moivre’s theorem to show that
cos 60 = 32cos® 0 — 48cos* + 18cos?f — 1

(cosb + i5inf)° = cos GO + isinGH Apply de Moivre’s theorem.

= cosf 8 + ©C,cos? H(isinb) + ¢C,cos* Blisin 6)°
+ ©Cycos? H(isinf)? + C,cos” B(isinh)*
+ “C-cosf(isind)” + (isin #)°

Apply the binomial expansion to
(cos @ +isin 6)°.

= cosfl + Gicos® #sinf + 152 cos? Bsin? 6
+ 20i8cos?0sin0 + 151t cos? Osintd  ———— Simplify.
+ GiPcos fsin® ) + i©sin® ()

= cos° 8 + Gicos® fsinfl — 15 cos? fsin®
- 20icos?0sin 8 + 15cos? fsint ——  Simplify the powers of i.
+ Gicosfsin®f — sintd

Equating the real parts gives . .
The real part of cos 66 + isin 66 is cos 66.

coﬁl 6 = cos®f# — 15 costfsincf
+ 15 cos? fsint @ — siné

= cos°f — 15 cos* 1 — cos?f)
+ 15cos20(1 = cos? )2 = (1 = cos? )

Apply sin?@ = 1 - cos® 6,
sin“f = (sin? @)% and sin®@ = (sin6)°.

= cosff — 15cost (1 = cos? )
+ 15¢cos” 0(1 — 2cos®f + cos™ 6) Multiply out the brackets.
— (1= 3cos?f + 3cos*l — costl)
= cos°f — 15cos* 8 + 15 cos° 4
+ 15¢c0%20 — 30co5%0 + 15cos~0
— 1+ 3cos* 0 — 3cos? B + cosf
= 32¢c05°0 — 4Ecos 0 + 18cosh — 1 : Simplify.
Therefore,
cos6l = 32cosfl — 48costl + 186cos? 0 — 1

Apply a cubic binomial expansion.

L

Expand the brackets.

You can also find trigonometric identities for sin” 6 and cos” @ where n is a positive integer.
If z=cosf +isin0, then

% =z"'=(cosf +isinf)™
= (cos(=0) + isin(-0)) Apply de Moivre’s theorem.
=cosf—isind Use cos @ = cos (—#) and —sin @ = sin (—6).

It follows that

o+ cos+isinf +cos@—isinf =2cosf

b | =

=cosf+isinf — (cosf@ —isinf) =2isin@

by =

1?2



Complex numbers

Also,
2" = (cos 0 +isin )" = cosnf + isinnf By de Moivre's theorem.

==z"=(cosf+isin)™
= (cos(—nf) + isin(—nd)) Apply de Moivre's theorem.
= cos nfl — isinnf Use cos ! = cos (—f) and sin (=) = —sin ¢,

It follows that

:”+l,,—cosn9+ isinnf + cosnf — isin nf = 2 cos nf

[

2" - = cosnf + isinnf — (cos nf — isinnb) = 2isin nd

B[

It is important that you remember and are able to apply these results:

"4 % =2cosf LIRS l” = 2cos nl In exponential form, these results are
2 equivalent to:
1 - - 1 - -
| | - == m = = :
=z 2150 g = 2ismang cosnfl = —(e‘"” + e~) sinnf = 2—1§(e'"9 — e ),

Express cos® § in the form acos 50 + bcos 30 + ccos 6, where a. b and ¢ are constants.

Let z = cosf + isinf

(5 + %)_ = (2cos6)> = 32cos”f Usez+%= 2 cos 6.
3
= z9 + j( —4(1) + 5(:‘2:3(1) + 5(?:2(%)
114 1\5 Apply the binomial expansion to
+oC,2(1) + (1) ey
="+ 5:4(%) + 10:3(_—:) + 10:2(%)
" 5_-(:1-5) (& - Simplify
=27+ 5z% + 1 :+Q+%+_%
= (35 + &) + 5(:3 oL ) + 10( j) ——  Group “and—terms
=2 560 + 5(2 30) + 10(2 0
cos icicne.26) el =L Use -"+—1~—2c05nf?
So, 32cos”° 8 = 2cos 58 + 10cos 30 + 20cosfl
= cos®f = s=cos 56 + =cos 30 + 2cosf ~——————— Thisis in the required form with a =16

=7 =5
b=sandc=3

12



Example @

a Express sin* @ in the form dcos 460 + ecos 20 + f, where d, ¢ and f are constants.

T
2

b Hence find the exact value of f sin* @ do.
]

a let z=cosf + isinf

.y

il

(2isin@)* = 16i*sin* A = 16sin* @ Use z — % = 2isin @, noting that i“=1

P e "{'T‘.'Z—le
e C;-( _-)"‘ (-2-( :) Apply the binomial expansion to

ercu{ A + () =3
coean (D rer(d) |

+4z(—75) + (3] | By
=“4—4:“+G—":‘d+_“§
= (_—4 + :14) - 4(:2 + :15) +6 Group z" andzlﬂ-terms.

=2cosd4f — 4(2co=20) + &

-

1
S0, 16sin*ll = 2Zcos 4 — Hcos 20 + & Use 2%+ - £Eds 0.

gy 1 X 3
7 sin® 6 = g cos4l — 3 cos20 + 3 ' This is in the required form with
d=%,e=-3and =3

ral=

b fg sint 0 dfl = f (£cos46 - Lcos 26 + 2| df —————— Use the answer from part a.
(6] o]

1 § o 3 alz !
= IE%EBIH 46' — 15”’1 20 + EE}]L} ﬂ 1
cos k@ integrates to x sin k6.

= §T§5'Ir‘|2ﬂ—‘11—5iﬂﬂ+fi£ -0
~ (2)

3
=0=0+—=—
T
_3m
=45

Use de Moivre’s theorem to prove the following trigonometric identities:
(®) 1 a sin30 =3sin0 - 4sin’f b sin 50 = 16sin°f — 20sin36 + Ssin 0
¢ cosTO=064cos’"0—112cos’d + 56cos*0 — Tcos b d cos*l = %(00546 +4dcos20 + 3)

e sin’f = ¢ (sin 50 — 5sin 30 + 10sin §)

14



Complex numbers

2 a Use de Moivre’s theorem to show that

cos 50 = 16¢cos®* @ — 20cos* f + 5cos (5 marks)
b Hence, given also that cos 30 = 4cos* — 3cos f, find all the solutions of cos 50 + 5cos 30 =0
in the interval 0 = 6 < 7. Give your answers to 3 decimal places. (6 marks)
3 a Show that 32cos®f = cos 66 + 6cos 4 + 15cos 20 + 10. (6 marks)

b Hence find fﬁ cos®d df in the form am + b/3 where a and b are rational constants to be
found. 8 3 marks
)

6

Show that 32cos?fsin®f = cos 66 — 2cos 46 — cos 20 + 2. (6 marks)

T

b Hence find the exact value of f cos2fsin* 6 do. (3 marks)

0

® 5 By using de Moivre’s theorem, or otherwise, compute the following integrals.

m

a f_sinﬁﬁdl? b f sin2flcos*f dé ¢ f sin? 6 cos’ € df
0

0 0

Use de Moivre’s theorem to show that
cos 60 = 32¢c0s°0 — 48 cos*# + 18cos? 6 — 1 (5 marks)

b Hence find the six distinct solutions of the -
; Problem-solving
equation
3956 — 484 + 182 — % -0 Use the substitution x = cos @ to reduce

the equation to the form cos 66 = k.

6

giving your answers to 3 decimal places Find as many values of # as you need
where necessary. (5 marks) to find six distinct values of x.
7 a Use de Moivre’s theorem to show that sin4f = 4cos? #sin — 4cos #sin? 0. (4 marks)

dtanf —4dtan 0
1 —6tan’0 + tan*¥

b Hence, or otherwise, show that tan 46 = (4 marks)

¢ Use your answer to part b to find, to 2 decimal places, the four solutions of the equation
X4 -6x7-4x+1=0. (5 marks)

15



Complex numbers

2 a Use de Moivre’s theorem to show that

cos 50 = 16¢cos®* @ — 20cos* f + 5cos (5 marks)
b Hence, given also that cos 30 = 4cos* — 3cos f, find all the solutions of cos 50 + 5cos 30 =0
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found. 8 3 marks
)

6

Show that 32cos?fsin®f = cos 66 — 2cos 46 — cos 20 + 2. (6 marks)

T

b Hence find the exact value of f cos2fsin* 6 do. (3 marks)

0

® 5 By using de Moivre’s theorem, or otherwise, compute the following integrals.
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0
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@ Sums of series

You can use results about the sums of geometric series with complex numbers.

® Forw,zeC(C,

n-1 w(z" - 1) Links
- Wz =w+wi+wil+ .+ wgtl= —— in These results match the
o corresponding results for real numbers.
Lid lz] <1 The infinite series >_wz'converges only
1 o “ r=0
Z when |z] < 1.
« Pure Year 2, Chapter 3

=
[}
=]

s

wZ'=w+wi+wzil+..=

: T 5 W : s g
Given that z = cos - + isin -, where n is a positive integer, show that

=
1]
o

: T
l+z+22+...+2" =1 +1cot(—)
2n
2 n-1
l+z+22+ ... +2z01== : _11 Use the result for > wz’ with w = 1.
= r=0
i n o
- e ) =] Write z in exponential form as z = e”, and
e — 1 substitute,
= em = 1 !
T om [e7) =em=-1
= ’7

=2
- ;—_,? 1 J Problem-solving

i You know that sin nfl = Eli-(ei"” — g-ind),

-2 2n
- e% e_g;} You can use this result to simplify an
expression like e - 1 by writing it in the
= 2‘_2"3 2?1—_ form efle? - e7f) = e%(Zising). In this case
(=11 i B
2n this is equivalent to multiplying the top
o &
. and bottom of the fraction by e o,
R L m
N0 L
ilcos W2 + isin A ] _2—'2=i
= ( ( 2!‘1) ( 2:3)_ !
- sin——
2n
i m d m
B 1(605(551 = 'Sm(ﬁ)) e~ = cos (—#) + isin (—6)
a . =cosf —isind.
2n
. 5m(2”) r lCOﬁ(ZH)
- 5in ok,
2n

16



Complex numbers

T

‘3”‘1(%) " icos(g)
sin (%) 5in (%)

=1+ icot(%) as required ~———— Simplify.

The series el + @2 + 3 + . 4 e is geometric with first term e, common ratio e and n terms.

S eit{end — 1)
The sum of this series is given by S, = = T

Converting the exponential form into modulus-argument form lets you consider the real and
imaginary parts of the series separately.

e]ﬁ + ezlf’ + e3|ﬁ + s + e}iiﬁ
= (cosf + isin®) + (cos26 + isin26) + (cos36 + isin30) + ... + (cosnf + isinnb)

= (cosf + cos 26 + cos30 + ... + cosnf) + i(sinf +sin26 + sin30 + ... + sinnf)

Therefore,
@it _
cos @ + cos 20 + cos 30 + ... + cosnf = Re(%)
i anith _
sinf +sin20+sin360 + ... +sinnf = Im(E(em—ll})
,e —_—

S=e+ed 43+ +eb for @ = 2nm, where n is an integer.

a Show that §= -S040
sin 5

Let P=cosf +cos20+cos30+ ... +cos80 and Q =sinf +sin26 +sin36 + ... + sin 86

90 . 0 - ;
b Use your answer to part a to show that P = cos —-sin 46 cosec = and find similar expressions for

0 2 2
and —
0 P
ellle®d — 1) | S'is the sum of a geometric series.
a ef + 2t 4 g3t 4 4 @6 = n-1 wizh=1) . .
e -1 Use Zw:—:’:—_-_—l—wlth w=z=e"andn=8.
(88 _ 1) r=t =
=== =
g 1 L (e¥)8 = 8it
_ exfed® — 1)
ei — et L Multiply the numerator and denominator by e~

17



Chapter 1

_ ; ei—p !=ZIS|n‘§
2'|5'|r1§

4 Ao 40 _ o40) Use the relationship
R e8if — 1 = etifle4if — e~4¥) to rewrite the

21 s‘mg numerator.
e=(2isin 46) .
e e — e=48 = i sin 40
2I sin E
Z5in 40
== Simplify.
Sin—

2

e sin4d
b P =Re(S) = Re(iﬁ) Problem-solving

sin—
2 By writing each term of S in modulus-

90 . 48 argument form you can see that P is the
_ =g real part of § and Q is the imaginary part
- i of S.
2
20 0
= €05 "IN 4fcosec >
O = m{S) = Im eTs'rn;-l‘}
5in §
B sin %Eﬂném
‘S:'mﬁ
2
= 5in %65in49cosecg
5in 9—ﬁsin4ﬂ .:ostscE 5in9—9
—Q— = - 2 = = = tang—ﬂ
£ cos 30 sindf cosec 9 cos el 2
2 2 2
® 1 Givenz=¢e", wherenisa positive integer, show that:
al+z+22+...+271=0 bl+z+22+... z”:icot(%)

: 12
® 2 Show thatif z=e7, then > zr=1.
r=0

7
(P) 3 Show that > (1 +i) =-15i.

r=10

18



Complex numbers

4 The convergent infinite series C and § are

defined as The sum of an infinite geometric series with
=l +%cos€+500829+§%00536+ first term @ and common ratlorlsS,.,=1_r

¢ Pure Year 2, Chapter 3
S=1sinf+4sin20+35sin30 + ...

3

a Show that C +iS = : (4 marks)
o - el()
9 - 3cosd " 5L .
b Hence show that C = 7+——, and find a similar expression for §. (4 marks)
10 —6¢cos @
he series P an are defined for 0 < 0 < 7 as
5 Tl ies P and Q are defined for 0 < 0
P=1+cosf+cos20+cos30+ ... +cosl20
Q=sinf +sin20 +sin 30 + ... + sin 126
efil(e'r — g 1"
a Show that P+1Q0 = ( = ) (4 marks)
el — e':

b Deduce that O = sin 60sin ﬁcc‘s'.ec £ and write down the corresponding expression for P.

2 2
0 _ a-if i0 4 a-if
You can assume the results sin 0 = = 2ie and cos 0 = > ZL (4 marks)
¢ Hence find the values of @, in the range 0 < 0 <, for which P +1Q 1s real. (2 marks)
6 Series C and S are defined as
C=1+ (T)cosﬁ + (;)cos 20 + (g)cos 30+ ...+ (ﬁ)cos nt
S=(1)sing+ (3)sin20 + (5)sin 30+ ... + () )sin o
0\"  nb
a Show that C=|2cos 5] o83 (4 marks)
b Show that 5 = tan ze (3 marks)
C 2
7 a Show that (2 + ¢)(2 + e¥) = 5 + 4cosf. (2 marks)

The convergent infinite series C and S are defined by
C=1-%cosf +4cos20 — 5c0s 36 + ...
S=1sinf - ;sin20 +4sin 30 + ...

4 + 2cos b

b By considering C - 15, show that C = S dcosd and write down the corresponding expression
for S. (4 marks)
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Chapter 1

@ nth roots of a complex number

You can use de Moivre's theorem to solve an equation of the form z* = w, where z, w € C.
This is equivalent to finding the nth roots of w.

Just as a real number, x, has two square roots, Vx and —/x, any complex number has n distinct nth roots.

® |f z and w are non-zero complex numbers and # is a positive integer, then the equation 7" = w
has n distinct solutions.

You can find the solutions to z" = w using m (650 + 2k = cos B and
de Moivre's theorem, and by considering the fact sin (0 + 2kr) = sinﬂ_for integeryaliesiof k

that the argument of a complex number is not unique.

® For any complex number z = r(cos 8 + isin ), you can write z = r(cos (6 + 2k) + isin (0 + 2k)),
where £ is any integer.

a Solve the equation z* = 1.
b Represent your solutions to part a on an Argand diagram.
¢ Show that the three cube roots of 1 can be written as 1, w and w?® where 1 + w + w?*=0.

8 Z® = ]

z2=co50 +isin0 Start by writing 1 in modulus—argument form.

(rlcos + isin®)® =

coni0 + ha)+ \ainiOi+ Pk k e 7 Write z in modulus—argument form, and write the

general form of the argument on the right-hand
r3cos 30 + isin30) = side by adding integer multiples of 2.

cos (0 + 2km) +isin(OQ + 2kn), ke Z
Apply de Moivre's theorem to the left-hand side

Sor=1
of the equation.

30 = 2km o

k=0=0=0,%0z =cos0 +isin0 =1 Compare the modulus on both sides to get r = 1.

; 2n .
k=1=0= 3 —— Compare the arguments on both sides.
2wy . . . (2w y V3 :

50 2 = COS (?) + isin (3) ==zt i Problem-solving

D Choose values of k to find the three distinct
k=-1=f=-22 5 : AT

3 roots. By choosing values on either side of

. ( 2;,—) - ( 2_,»;) 1 V3 k = 0you can find three different arguments in

WG | TR T TE ™ the interval [, 7).
Therefore, : :
F= _% + ,% orz=-—u— 1% — These are the cube roots of unity.

20



Complex numbers

Plot the points z; =1, z, = =3 + i% and

V3 ,
Zy=—3~— |\% on an Argand diagram:
1 The points z;, z; and z; lie on a circle of radius
Re 1 unit.

The angles between each of the vectors z,, z; and

zyare 23_:rr’ as shown on the Argand diagram.

Notice that w* = w?

- (Wl " lﬁ] N (__1_ B IQ] -0 m It can be proved that the sum of the nth
2 e 2 2 roots of unity is zero, for any positive integer
n=2.

= |n general, the solutions to z” =1 are 7 = cos (%ﬂ) + isin(%) =e%fork=1,2,...,nand
are known as the nth roots of unity.
If n is a positive integer, then there is an nth root of unity w = e such that:
» the nth roots of unity are 1, w, w?, .-+, w"?!
o 1, w, w?, -+, w1 form the vertices of a regular n-gon

s l+w+wl+..+wrl=0

21



Example @

Solve the equation z* = 2 + 2iy/3.

Iy 24+ 213

0\ [

modulus = \,-"IIZE + (2\*'"3)2 =J4 +12 =4

argument = arctan(&—fla] =X
g = 3

Szt = 4(;’:05% + 15’m%)

(rlcos 0 + isin@)?

= 4((;05 (% + 2&77) + isin (% + 2!{7:)), keZ

(cos 40 + isin 40)

= 4(605 (% + 2!{.71') + isin (% + Qkfr)), keZ

Sorf=4=r=14 =2

To solve an equation of the form

— "= w, start by writing w in

modulus—argument form.

Now let =z = r(cos @ + isin @), and
write the general form of the
argument on the RHS by adding
integer multiples of 27.

Apply de Moivre's theorem to the
LHS.

Compare the modulus on both
sides to get rr = V2.

A0t 4 Fien Compare the arguments on both
3 sides.
:’\=O:>6’=i, 50 zy =2 Co5 - + isin
= (cootz +i5m32) When k= 1,40 =T+ 2r
7w e Whis
k== 0=s—, 50:2=~,2(<205 +|5|n—).—_f_ _m  2rn_Im
12 12 12 =t d ey
A=—1=>9-—?—g, 5O:g=u2(605(—'15_2'?r)+151ﬂ(—5_;))
1 LGl U Make sure you choose
k=-p=g=_NT - \"2"(505(—133) g (_ﬂ_qr)) n.co'nsecutive values of k to getn
12 12 1 distinct roots. If an argument is not
o 22 n . e in the interval [-, 7] you can add
or z =y2er, z=yZe%, 2=+v2e " orz=y2e "

22

or subtract a multiple of 2.

These are the solutions in the form
rel?,



Complex numbers

You can also use the exponential form of a complete number when solving equations.

Solve the equation z* + 4/2 + 4iV2 = 0.

22+ 4/2 + 42 =0
2= -42 - 4i/2

[ 4

h

modulus = \;’J(-4v"§)2 +

i~/_§)
a2

argument = —m + arctan

re®)? = el +2k “

Pl

(~4vZ) =32 +32 =JCA =8

__3x

it =
4 <4

—

—Ek
rie = el **J

Sor=8=r=yB=2

30 = - \2‘—W+2k7r

m s
k=O=>z9=-Z.5o:1=28‘
L) _5m Y S
£—1=>H—12.5o..2—26
et .\ ;
k=-1=0= 15° 9° Zq = 2¢
orzZ= 2(605( + 15|r1 )

S éﬂ
(505 + isin 12

Find the modulus and
argument of —4/2 - 4iV2.

Write z = re'” and use

(re')n = 1", Remember

to write the general form of
the argument on the right-
hand side by adding integer
multiples of 2.

Compare the modulus on both
sides to get r=2.

Compare the arguments on
both sides.

Choose values of k to find
three distinct roots. Either
choose values that produce
arguments in the interval
-7 < 6= oradd or
subtract multiples of 27 as
necessary.

27



Chapter 1

1 Solve the following equations, expressing your answers for z in the form x + iy, where

x,yeR.
az-1=0 b z22-i=0 ¢ z22=27
d 2*+64=0 e +4=0 f 232+8i=0

2 Solve the following equations, expressing the roots in the form r(cosf + isin @),
where -7 < 0 < 7.
8z =1 b z4+161=0 ¢ 22+32=0
d 23=2+2i e #+21/3=2 f 23432/3+32i=0

3 Solve the following equations, expressing the roots in the form re”, where r > 0
and -7 < 0 = 7. Give 6 to 2 decimal places.

a z=3+4i b 22=V11-4i ¢ A=/ +3i

® 4

Find the three roots of the equation (z + 1)* = -1.
Give your answers in the form x + iy, where x, y € R,

B

b Plot the points representing these three roots on an Argand diagram.

¢ Given that these three points lie on a circle, find its centre and radius.

Find the five roots of the equation z* - 1 = 0. Problem-solving

Give your answers in the form r(cos ¢ + isin ), where -7 < 0 = . Use the fact that the

b Hence or otherwise, show that sum of the five roots
A7 | of unity is zero.

cos (2%) + cos(T) =-3

©)

® 6 a Find the modulus and argument of -2 - 2i/3. (2 marks)

b Hence find all the solutions of the equation z* + 2 + 2iy3 = 0.
Give your answers in the form re", where r > 0 and -7 < § < 7 and
illustrate the roots on an Argand diagram. (4 marks)

® 7 Find the four distinct roots of the equation z* = 2(1 - iy3) in exponential form, and show these
roots on an Argand diagram. (7 marks)

E)8 z=6+i2
a Find the modulus and argument of z. (2 marks)

b Find the values of w such that w* = z4, giving your answers in the form rel’, where r > 0
and -7 < 0 = 7. (4 marks)

24



Complex numbers

® 9 a Solve the equation Problem-solving

l4z+22423+24+25+26+27=0 _
14z4 284274, #2" Isthesum

b Hence deduce that (z2+ 1) and (z* + 1) are factors of of a geometric series.

l+z+22+23+ 244+ 54260427,

Challenge

a Find the six roots of the equation z6 =1 in the form e'’,
where —x < f = 7.
b Hence show that the solutions to (z + 1)6 = zf are
km

z=—%+—21—icot(—6—),k=l, 2,3,:4,5.

m Solving geometric problems

You can use properties of complex nth roots to solve geometric problems.

® The nth roots of any complex number « lie The cantre of a
at the vertices of a regular n-gon with its reguilar polygon is considered to
centre at the origin. be the centre of the circle that
The orientation and size of the regular polygon will passes through all of its vertices.
depend on a.
Ima

For example, the sixth roots of 7 + 24i form this

! regular hexagon. Each vertex of the hexagon is
! / equidistant from the origin, which lies at the centre
' Re of the circle passing through all six vertices.

: m Explore nth roots of complex

numbers in an Argand diagram using GeoGebra.

You can find the vertices of this regular polygon by finding a single vertex, and rotating that point
around the origin. This is equivalent to multiplying by the nth roots of unity.

m If z, is one root of the equation z” =5, and 1, w, w?, ..., w" ! are the nth roots of unity, then
the roots of " = s are given by z,, 7,w, Z,w? ..., Z,w" L

25



Example @

The point P(y/3, 1) lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin.

a Find the coordinates of the other vertices of

the triangle.
b Find the area of the triangle.

a The cube rocts of unity are 1, w, w? where

w=e°.
V3 +i= 26t
So the vertices are at:
2et =3 +i
2etle?) = 267 =—/3 +1
2e8(e)” = 26¥(e¥) = 26% = 26 = =2

So the coordinates of the vertices of the
triangle are

(V3. 1), (~V3, 1) and (O, -2).

L

VA

(V3.1

/.

0 X

(O, =2)

Area = _;, x base x height

= é x 2¢3 x 3
= 3/3

L

Problem-solving

Consider the Cartesian coordinate plane as an
Argand diagram. The vertices of the triangle will
correspond to the cube roots of (V3 + i)°. You can
find these roots by multiplying V3 + i by the cube
roots of unity.

Usew=e" to write down the cube root of unity.

w

|V3 +i|=2and arg (V3 + i) .

You know that one cube root of (V3 +i)*is V3 +1i.
Multiply this by the cube roots of unity to find the
other roots.

Write your answers as Cartesian coordinates.

® 1 Find the coordinates of the vertices of the following regular polygons with centres at the origin.

a Equilateral triangle with one vertex at (0, 4)

b Square with one vertex at (5, 0)

¢ Regular pentagon with one vertex at (-1, V3)

d Regular hexagon with one vertex at (2, 2)

2 Find the coordinates of the vertices of an equilateral triangle with centre (2, 3) and one vertex

at (3, -2).

26



Complex numbers

3 The triangle Q4B in an Argand diagram is equilateral. O is the origin and A4 corresponds to the
complex number v3(1 —1). Bis represented by the complex number 5.

Find the two possibilities for & in the form re'?. Illustrate the two possibilities for O4B in a
sketch. (5 marks)

4 a Find the 4th roots of —=12i in the form re where r > 0 and —7 < 0 < 7. lllustrate these roots
on an Argand diagram. (6 marks)

Let the points representing these roots on an Argand diagram, taken in order of increasing 0, be
A, B, C, D. The midpoints of the sides of 4ABCD represent the 4th roots of a complex number w.

b Find w. (4 marks)

5 Pisone vertex of a regular hexagon in an Argand diagram. The centre of the hexagon is at the
origin. P corresponds to the complex number 8 + 8i.
a Find, in the form « + bi, the complex numbers corresponding to the other vertices of the
hexagon, and illustrate these on an Argand diagram. (5 marks)
b The six complex numbers corresponding to the vertices of the hexagon are squared to form

the vertices of a new figure. Find, in the form « + b1, the complex numbers corresponding to
the other vertices of the new figure. Find the area of the new figure. (4 marks)

6 An ant walks forward one unit and then turns to the right by %T [t repeats this a further

3 T
sin _)

r(%.)" (6 marks)

three times. Show that the distance of the ant from its initial position is

Mixed exercise o

® 1 a Use el = cosf + isin @ to show that cos 6 = 5(e¥ + e-i¢),
cos(A + B) + cos(A — B)
2

b Hence prove that cos Acos B =

2 Given that z = r(cos ) + isinf), r € R, prove by induction that z" = r*(cos nf) + isinnf), n € Z*.
(5 marks)
(cos 3x + isin 3x)?

3 Express in the form cos nx + isin nx where # is an integer to be determined.

COSX —isinx

4 Use de Moivre’s theorem to evaluate:
a (=1 +i)f b —1 7

Iﬂ-—

5 a Given z = cosf + isin #, use de Moivre’s theorem to show that z"+ :l,—, = 2cosnd. (4 marks)

3
b Express (33 + %) in terms of cos 6 and cos 20. (3 marks)

¢ Hence, or otherwise, find constants ¢ and b such that cos*20 = acos 60 + bcos20. (3 marks)

T

. 6 - g ;
d Hence, or otherwise, show that f cos?26 dfl = kv3, where k is a rational constant. (4 marks)
0

27



Chapter 1

63

Show that
cos’f = Lﬁ(cos 50 + 5¢cos 30 + 10cos f)

(5 marks)

: g : s T L ; 2
The diagram shows the curve with equation y = cos’x, =5 = x = 5. The finite region R is
bounded by the curve and the x-axis. - -

VA

b

7a

b

C

o
=¥

Calculate the exact area of R.

Show that
$in® 0 = —35(cos 60 — 6cos 40 + 15¢0s 20 — 10)

Using the substitution a: = (E - 9), or otherwise, find a similar identity for cos®@.

2

5m

3 find the exact value of a.

Given that fo cos®8 + sins0dd =

(E/P) 8 Use de Moivre’s theorem to show that

(E/P) 9

-]

29

sin 60 = sin 20 (16 cos* 0 — 16cos? 0 + 3)

Use de Moivre’s theorem to show that
cos 50 = 16¢cos’ — 20cos* 0 + Scosl
Hence find all solutions to the equation
16x° =20+ 5x+1=0
giving your answers to 3 decimal places where necessary.

Show that
sin® 0 = 7¢ (sin 50 — 5sin 360 + 10sin )

Hence solve the equation
sin50 — 5sin30 +9sinf=0for0=60<nm

Use de Moivre’s theorem to show that cos 56 = cos #(16 cos*# — 20cos? ) + 5)

By solving the equation cos 50 = 0, deduce that cos? (T%) = : +8V' 2
Hence, or otherwise, write down the exact values of cos* (—:{’E) cos* (%) and
Or
2 2
cos ( 10 )

(6 marks)

(5 marks)

(3 marks)

(5 marks)

(5 marks)

(5 marks)

(5 marks)

(5 marks)

(4 marks)

(5 marks)

(4 marks)

(3 marks)



Complex numbers

12 a Use de Moivre’s theorem to find an expression for tan 3¢ in terms of tan 6. (4 marks)
cot?*d — 3cot
b Deduce that cot 30 = 300120 - 1 (2 marks)

13 The infinite series C and S are defined as
C=1+kcost+k’cos20 + kicos3f + ...
S=ksinf + k*sin20 + kK3sin 30 + ...

where £ is a real number and |k| < 1.

1 = kcoséd

. 1 + k% = 2kcosd
expression for S. (8 marks)

By considering C + 1S, show that C = and write down the corresponding

@ 14 a Express 4 — 41 in the form r(cos# + isin @), where r > 0, -7 < § < 7, where r and 0 are

exact values. (2 marks)
b Hence, or otherwise, solve the equation z° = 4 — 4i, leaving your answers in the form z = Re**",
where R is the modulus of z and k is a rational number such that -1 = k = 1. (4 marks)
¢ Show on an Argand diagram the points representing the roots. (2 marks)
15 a Find the cube roots of 2 = 2i in the form re" where r > 0 and -7 < 0 < . (5 marks)

These cube roots are represented by points 4, B and C in the Argand diagram, with 4 in the
fourth quadrant and 4BC going anticlockwise. The midpoint of ABis M, and M represents the
complex number w.

b Draw an Argand diagram, showing the points 4, B, C and M. (2 marks)
¢ Find the modulus and argument of w. (2 marks)
d Find w® in the form a + hi. (3 marks)

16 An equilateral triangle has its centre at the origin and one vertex at the point (2, 1).
a Find the coordinates of the other two vertices. (4 marks)

b Show that the length of one side of the triangle is v15. (2 marks)

Challenge

Show that the points on an Argand diagram that represent the roots

-~ 6
of (‘ ; 1) =1 lie on a straight line.

20



Summary of key points

1 You can use Euler’s relation, € = cos @ + isin 6, to write a complex number z in exponential
form:

z=re¥

where r=|z| and # = arg z.

2 For any two complex numbers z, = ;e and z, = r,e',

L]

a

e r_ieiw,-a,}
L
3 De Moivre's theorem:
For any integer n, (r(cos f + isin #))" = i"(cos nf + isin nf)

1 1
4+ z+==2cos0 « "+ —=2cosnb
1 - 1 -
» z——=2isinf o Z" — == 2isinnf
5 Forw,zeC,
n-1
wiz" —1)
s Y wzi=wawz w224 Wzl
r=0 z=1
> wzl=w+ wz+wz24 .. = lZi <1
#=0 =2

6 If zand w are non-zero complex numbers and # is a positive integer, then the equation z = w
has n distinct solutions.

7 For any complex number z = r(cosf + isinf), you can write
z = r(cos (0 + 2km) + isin (0 + 2km))
where k is any integer.

8 In general, the solutions to z” = 1 are z = cos (%) +isin (Z—gk) =e% fork=1,2,...,nand
are known as the nth roots of unity.

If n is a positive integer, then there is an nth root of unity w = e such that:
» The nth roots of unity are 1, w, &?, ..., w"!

» 1, w, w2, ..., w1 form the vertices of a regular n-gon

* l+w+w?+ . +wl=0

9 The nth roots of any complex number s lie on the vertices of a regular n-gon with its centre at
the origin.

10 If z, is one root of the equation z" =s,and 1, w, w?, ..., w"! are the nth roots of unity, then the
roots of z# = s are given by z;, z,w, z,0?, ..., Z;w* L

20N



Series

Objectives
After completing this chapter you should be able to:

® Understand and use the method of differences to sum finite series
—> pages 32-37
-» pages 38-39

e Find and use higher derivatives of functions
® Know how to express functions as an infinite series in ascending
-» pages 40-44

powers using Maclaurin series expansion
® Be able to find the series expansions of compound functions
= pages 44-48

Prior knowledge check §
1 Find the sums of the following series /4
16

b Z %_(3);;—1

Fi‘:ﬁ

« Pure Year 2, Chapter 3

2 a Show that

n
Y (2+2r+3)= %!?(2”2 + 91 + 25)
=1

Physicists use Maclaurin series in special
’ 30
b Hence find }_ (2 + 2r + 3)
10
&« Book 1, Chapter 3

relativity to approximate the Lorentz
factor. The Lorentz factor relates time,
length and relativistic mass change for a
moving object. Experiments with atomic
clocks have shown that time passes
more quickly for a stationary observer a g_‘ b gi‘_a
X X

, than for one travelling at high speeds.
- Exercise 2D, Challenge

Given y = sin 3x, find:

€« Pure Year 2, Chapter 9




Chapter 2

@ The method of differences

You can use the method of differences to find the sum of a finite series.
® |f the general term, u,, of a series can be expressed in the form
f(r) —f(r+ 1)

You can also start with u, written in the form

then i u, = i (F(r) - f(r + 1)) f(r + 1) — f(). After adding and cancelling,
r=1 r=1

you get iu,. =f(n+1) - f(1)
so u,=f(1)-f(2) e

u, = £(2) - (3)
u; = £(3) - f(4)

u,=f(n) - f(n+1) t + U : ;Ei; s Eg; +f(2) - f3)

Then adding > _ u, =f(1) — f(n + 1) — The f(2) terms cancel.
r=1

By summing u, + u, + ... + u, all terms cancel except
the very first term, f(1), and the very last term, f(n + 1).

a Show that4r® = r¥(r + 1) = (r - 1)%2
b Hence prove, by the method of differences, that

i:r-* = %nz(n + 1)

r=1

a r3r+ 12 —(r—1%r? Start with the RHS.
=ree 4+ 2r+1) -2 =2r+ e
=+ 2r3 4 92 —pt 4 217 - 2 Expand and simplify the brackets.
= 43

n

b Consider Z (ré(r + 12 = (r = 1%r?)

let r=1 1527 - (012
FeE B LR Al th l he first and |
. . the terms cancel except the first and last.
r=3: 3347 - (2§25 d
: \VELLORITS When using the method of
ro= n2(n + 12 = (n—4%n? | 5 g.
differences, be sure to write out enough terms
Sum of terms = n?(n + 1)° to make it clear which terms cancel. When you
" cancel terms, make sure that they can still be
Then 43 r2 = n2(n + 1) clearly read. You could cross them out in pencil.
r=1
n
So Y. r3 = +n?(n + 1)2 The same result could be proved by mathematical
Ll induction. « Book 1, Chapter 8

12



Example e

: 1 1 | Z 1 . .
Verify that D =r 7+1 and hence find é:a o+ 1) using the method of differences.
1 1T _r+1-=r : . 2
il i Write as a single fraction.
. 1 e
=7+ Simplify.
J'f. 1 N n _]_ ‘1 .
,Z;, rir+1) " rg](r T+ T]
Let r=1: } - %[
r=2: g = %1
P 3 % - % All terms cancel except the first and last.
'=n %— T
' n+1_|
< 1
50221.'*0* vz Rl e
_h+1-1 Put over a common denominator.
T on+
_ . n
T+
Example o
Find > P using the method of differences.
rel -
T { Use the difference of two squares to factorise the
4r2 =17 @r+H2r=-1) denominator.
e = Ay Split the fraction into partial fractions
@r+0@r—1 _2r+1 2r-1 Bl [RELOWIRLO/RATCIAl IACHORR,
< Pure Year 2, Chapter 1
_ A@r -1+ B@r+1)
@r + N2r - 1) L Add the fractions.
S0 1= A@2r = 1)

+ B(2r + 1) — |
Set numerators of both sides equal to each other.

13



Put values of rinto find 4 and B.
S 5 S | J
1
2

1
2r—1"2r+1
only. The 3 is only required later.

Substitute the values of r into

}
j%-- - Z All terms cancel except the first and last.
/

If the general term of the series is given in the form f(r) — f(» + 2), you need to adapt the method of
differences to consider the terms f(1), f(2), f(n + 1) and f(n + 2).

2 : . :
a Express G+ +3) in partial fractions.

b Hence prove by the method of differences that

D 2 n(an + b)
2. (r+ D(r+3)"6(n+2)n+3)

r=1

where ¢ and b are constants to be found.

30,
. 2 s
¢ Find the value of r=§21 CrDe+3) to 5 decimal places.

e ¥A



Split into partial fractions.

Add the fractions.

2 _ A, B
r+Nr+3)  r+1 r+3
_ A+ 3) + B +1)
=+ 0+ 3)
= 2=Alr+ 3)+ Blr + 1)

letr=-3: 2=-2B= B=-1

Let r = —1:

2=24=A4=1

2 1

1

Therefore FE N+ 3) =T

Tr+3

b Using the method of differences,

when r=1:
i
g

r=n-1

o
S50 o+ N

r=1

1

-
-1
-1

T = 1

}g_ 1
n+2

%
I

=

4

64}

Compare numerators.

Cancel terms.

1 1

Problem-solving

n

() - fr+ 2) =

r=1

f1) +f2) —f(n+1) —f(n+2)

Put these four terms over a

-
+3) " &

n+2 n+3

_Sn+2)n+3)—6n+3)—-6n+2)

e+ 2)n+ 3)

- ot 4 25n+ 30 = Ep— 16~ En= 12

Gin+ 2)n+3)

51 + 13n

"G+ 2)n+ 3)

n(5n + 13)

common denominator.

Factorise.

=6 + 2)n + 3)

Soa=5and b=13.

30 P 20 2 f: f:
R i Subtract from > .
i) 21 fl' + 1)“ + 3) rE=l Fa
_30(5 x 30 +13) 20(5 x 20 + 13)
T6(30 + 2)(30 + 3)  6(20 + 2)(20 + 3)
_ 815 565
=305¢ ~ 759 Evaluate.
=82 500738 to 5 4 Give answer to 5 d.p
24288~ e =

15



Split into partial fractions.

Add the fractions.

2 _ A, B
r+Nr+3)  r+1 r+3
_ A+ 3) + B +1)
=+ 0+ 3)
= 2=Alr+ 3)+ Blr + 1)

letr=-3: 2=-2B= B=-1

Let r = —1:

2=24=A4=1

2 1

1

Therefore FE N+ 3) =T

Tr+3

b Using the method of differences,

when r=1:
i
g

r=n-1

o
S50 o+ N

r=1

1

-
-1
-1

T = 1

}g_ 1
n+2

%
I

=

4

64}

Compare numerators.

Cancel terms.

1 1

Problem-solving

n

() - fr+ 2) =

r=1

f1) +f2) —f(n+1) —f(n+2)

Put these four terms over a

-
+3) " &

n+2 n+3

_Sn+2)n+3)—6n+3)—-6n+2)

e+ 2)n+ 3)

- ot 4 25n+ 30 = Ep— 16~ En= 12

Gin+ 2)n+3)

51 + 13n

"G+ 2)n+ 3)

n(5n + 13)

common denominator.

Factorise.

=6 + 2)n + 3)

Soa=5and b=13.

30 P 20 2 f: f:
R i Subtract from > .
i) 21 fl' + 1)“ + 3) rE=l Fa
_30(5 x 30 +13) 20(5 x 20 + 13)
T6(30 + 2)(30 + 3)  6(20 + 2)(20 + 3)
_ 815 565
=305¢ ~ 759 Evaluate.
=82 500738 to 5 4 Give answer to 5 d.p
24288~ e =

15



Chapter 2

1 a Show that r = 3(r(r + 1) — r(r - 1)).

b Hence show that ZI p= %(n + 1) using the method of differences.

r=|

. 1 1 1
() 2 Given Fr+ D +2) = 2kr+ 1) 20+ 1)(r + 2)

3 L 1 ; !
find Z:] pr PR Y using the method of differences. (5 marks)
3 a Express " 35 in partial fractions. (1 mark)
b Hence find the sum of the series 2 7 +2) using the method of differences. (5 marks)
@ 4 a Express m in partial fractions. (1 mark)

. n 1 i .
b Hence find the sum of the series ¥~ ———=———=~ using the method of differences. (5 marks)
LG+ +I)

A V.
5 a Show that CrDI=A G+ D) (2 marks)
n r
b Hence find rg G+ 1 (5 marks)
; 2r+1 1 1 " 2r+l
® 6 Given that et TR GLip find r; P+ 1P (6 marks)

1
2r+32r+5 an+ b’

® 7 a Use the method of differences to prove that ) where a and b are

P ]

constants to be found.

b Prove your result from part a using mathematical induction.

s 8 n(an + b)
8 Prove that ) =23 +4 - Gn+ D0On+ ) where @ and b are constants to be found.

r=1

(6 marks)

m This question can be answered using either the method
of differences or proof by induction. In the exam, either method
would be acceptable. If you use proof by induction, you will need
to substitute values of n to find the values of a and b.

9 Prove that y~ (r + 1)2 = (r = 12 =anln + 1), where 4 is a constant to be found. (4 marks)

r=1

16



Series

& 3 an
10 a Prove that
r; Br+1

VETY [ where @, b and ¢ are constants to be found. (5 marks)

n

: 3 In+1)
b Hence, or otherwise, show that ;::" TR TR Al 1 T (4 marks)
i  2r+ 1 1
11 Robin claims that; T Vs

His workings are shown below. Explain the error that he has made.

Using partial fractions:

2r+1 4—+ B
rr+1) " r o+

Therefore 2r + 1 = Alr + 1) + Br
SoAd=1and B=1.

Using the method of differences,

f)y=1+%

) =3+3

f3)=3+%

fn-1=—1r+l
P -

F{n}_n+n+‘1

r+ | e -
rr+1) " n+

"
Summing the differences: %" £ !
r=1

(2 marks)

1 | | 1 3 an+ b _
12 Show that 0 X3+2x4+3x5+...+M(”_{P2)-4—2(?”_l)(ﬁr_|-2),where.cuemdb:—a.re

constants to be found.

(6 marks)

13 a Express or 1 li2r 75 in partial fractions. (3 marks)
25

b Find the value Of,.:z;:f, TR T T b 4 decimal places. (5 marks)

Challenge

30
a Given that Eln(l + __1“) = Ink, where k is an integer, find k.
r=1 r+2

18 nlan’+bn+o)
b Given thatgr(r+3} = (H+1)(n+3](n+3].ﬁnd a, band c.
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@ Higher derivatives

You need to be able to find third, and higher, derivatives of given functions.
You already know how to find first and second derivatives.

dy
If y = f(x), the first derivative of f(x) is given by d_jc = f’(x), and the second derivative of f(x) is given

d?y (d}’) ,
byﬁ—a I).' =f (Xx).

Similarly, the third derivative is given byd—jy = E(&) = f"(x), and so on.
dx?  dx\dx?
Airendaing » dmes wit repert o, QI 1. oincernative of =101
written as g;{ = ).
diy 1

Given that y = In(1 — x), find the value of Fe when x = 3

d) 1 d 1 Use the chain rule.

ax - T-x dx =) = 1 -x =l = NEE: &« Pure Year 2, Section 9.3
g (j\]?) = 0= =g =52
So when x = —12— C% .. M Substitute x = >

f(x)=e"
a Show that f'(x) = 2xf(x).

b By differentiating the result in part a twice more with respect to x, show that:
i £(x) = 2f(x) + 2xf'(x) ii "(x) = 2xf"(x) + 4f'(x)
¢ Deduce the values of {'(0), f"(0), and £"(0).

 du
dx

a f'tx) =e" %{.\‘2} = 2xe" If f(x) = e”, then f'(x) = e

= 2.\‘?{,‘()

L f)=e

b i (x)=2fx) + 2xf'(x) |
i F(x) = 2F(0) + (2xF'(x) + 2F(x) Use the product rule. ¢ Pure Year 2, Section 9.4

= 2xf"(x) + 4f'(x)

Differentiate again.

29



Series

c f(O)=e®=1

) =2 x0xe¥=0

f(0) = 2§{0) + 2 x O x f(0) Substitute x = 0 into f'(x).
= 2f(C) =

F"0) = 2 x O x F'(0) + 4f'(0) Substitute x = 0 into f(x).
= 4f'(0) =

Exercise @

1 For each of the following functions, f(x), find f'(x), {"(x), f(x) and f")(x).
a e~ b (1+x) c xe* d In(1 + x)

n
. ’ , ; v
® 2 a Given thaty= e’** find an expression, in terms of y, for T

6

d .
b Hence evaluate a;‘; when x = In (%)

3 Given that y = sin” 3x,

dy . . . dy dy  dYy
a show thata- 3 sin 6x b find expressions for T2’ od and dxd
| dty Bk i &
¢ Hence evaluate 75 when x = ¢
4 f(x)=x%~
a Show that f"(x) = (6x = 6 = x})e*. b Show that f"(2)=0

5 Given that y = sec x,

-

i 25ec% x— seex

a show that

d3 =
b show that the value of d—:: when x = % is 11v2.

® 6 Given that y is a function of x,

d2; d:
a show that = (y’)—Zyd)L (di)

dy d% diy d3
b Find an expression, in terms of y, dx' an and ax 5 for o (1?).

7 Given that f(x) = In (x + v 1 + x2), show that:

a vVIi+x2f'(x)=1 b (1+x2)f"(x)+xf'(x)=0
¢ (1+x2)f"(x)+3xf"(x) + ' (x)=0 d Deduce the values of {'(0), {"(0) and " (0).
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@ Maclaurin series

Many functions can be written as an infinite sum of terms of the form ax”. You may have already
encountered series expansions like these:

1
=l+x+x2+x°+..,[x| <1 : ; :

1=-x L /x| The first two series expansions
; 23 shown here are examples of the binomial

*1+r-1+i——‘i-—+f‘——— x| <1 ;

Lt T R T s expansion. « Pure Year 2, Chapter 4
x2 x3 x4

e¥=1l+x+—4+—+=—+ ... ,xXER
2 6 24

Given that f(x) can be differentiated infinitely many times and that it has a valid series expansion
of the form f(x) = ag + a;x + drx> + asx* + ... + a,x" + ..., where the ¢ are all real constants, show
that the series expansion must be

£"(0)x? fO0)x" s

=f0)+f'(0)x + —=7— Attt T

Write f(x) = ap + ayx + asX? + azx* + ... + a4, x" + ...
(O) = (fo
Differentiating f(x) gives:

The coefficient of ¢, can be
found by setting x = 0.

i = a + 2apx + 3a3x* + ... +rax™" + Successively differentiate

with respect to x to obtain
f'(x), f"(x) and " (x).

=2 X 1ap + 3 X 2azx + ... + rir = Na,x™2 + ...

==L

=3 X 2 X lazg+ ... +rlr = 1r - 2lax™3 + ...
Continuing in this way by differentiating r times:
fx) = rla, + terms in powers of x

Evaluate each term at x = O:

fr{oj - a’-, = ay = f'[OJ

10) = 2la, = a, = f';?"' Find the coefficients a,, a,,
! dy,..., dy... by substituting
) B s = ©) x=0 mtc.) each result and
3! rearranging.
" _ _ f.’r'} O}
Pl s rg g Substitute a; = f'(0),
) (0) f”(0)
(O (0 (o] Sl =——
Therefore f(x) = f(O) + '(O)x + éJ 2+%.\-3+.,.+ £| L b, G
' : _ fin(o)
A

LD



Series

In this process, outlined in the worked example above, a polynomial in powers of x is being formed
step by step. The process focuses on x = 0; substituting x = 0 into successive derivatives increases the
power of the polynomial. For example, if you stop the process after finding f'(0) the polynomial is

linear, f(0) + f'(0).x, after f"(0) it is quadratic, f(0) + f'(0)x + Fé?) x?, after f”(0) it is cubic,

; f"(0) f"(0)
o+ Tix+ 2! x4 3l xanase o, m Not all functions satisfy the
The above argument assumes that the function can condition that f(0), f*(0), f"(0), ..., f(0) all
be written in the given form. This is only true if the have finite values. )
given series converges. The above reasoning also only Forexample, when for = Inx, f'on =
holds if the function can be differentiated an infinite 5o f'(0)is undefined and therefore does not

number of times, and if f(0) is always finite. have a finite value.

= The Maclaurin series expansion of a function f(x) is given by

f(x) = F(0) + F(0)x + O "“’ R e +f%°’x-+

The series is valid provided that f(0), f'(0), f(0), ..., f)(0), ... all have finite values.

The polynomial f(0) + f'(0)x is a Maclaurin polynomial of degree 1.

f"(0)

51 ——x?is a Maclaurin polynomial of degree 2.
f"(0)

The polynomial f(0) + f'(0)x _,_T_\-z L f“:,ﬁ L

Even when f(0) exists and is finite for all ¥, a Maclaurin series expansion is only valid for

The polynomial f(0) + f'(0)x +

x*is a Maclaurin polynomial of degree r.

values of x that give rise to a convergent series. For example, the Maclaurin series of

iIS1+x+x2+x3+....
But when x = 2, the series gives 1 + 2 + 4 + 8 + ... which does not converge to 1+ =-1.

m The range of validity for some individual Maclaurin series is
given in the formulae booklet. If no range of validity is given in this
chapter, you may assume that the expansion is valid for all x € R.

a Express In(1 + x) as an infinite series in ascending powers of x.

b Using only the first three terms of the series in part a, find estimates for:
i Inl.05 ii In1.25 iii In1.8

Comment on the accuracy of the estimates.

a f(x)=mh{+x) = fO)=h1=0

Flx) = ﬁ —l+x0" = 0=

f(x) = =(1 + x)~2 = @)= Problem-solving

fx) = N=2)0 + 02 = 7(0) = 2| The term (=1)" can be used in the general term of
f(x) = (=1)(=2)(=3)...(~(r = (1 + x)~" alternating seguences, in which the terms are
= F0) = (=1) ~'(r — 1 alternately positive and negative.

¥ |



~1 (21

Substitute the values for f(0), f'(0), f"(0)

Soln(l+x=0+1x + 5 X2 +g X 3+ —l
Y =1 = 1)
+( 1) rf! Jxr_t_ J
s I ) . = L
Inf1 + x) =x 2-|~3+ + (-1) 7
e 3
b i lnigs= pos=000 005"
2 i,
~ 0.0487216... This is correct to 5 d.p.
2 3
b lifi25= 05 =Ce L 083
2 3
~ 0.223958... This is correct to 2 d.p.

2 3
Wi Inle=08-28 08

2 3
~ 0.6506666... This is not correct to 1 d.p.

a Find the first four terms in the Maclaurin series of sin x.

etc. into the Maclaurin series for f(x).

m This expansion is valid o

for -1 < x =< 1. If you use a computer
to generate the graphs of the
successive Maclaurin polynomials
you will see that they converge to the
graph of In (1 + x) between x = -1
and x = 1, but outside that interval
they diverge rapidly. Explore this
using GeoGebra.

The further away a value is from x = 0,
the less accurate the approximation

L will be and the more terms of the

series you need to take to maintain a
required degree of accuracy.

b Using the first two terms of the series find an approximation for sin 10°.

fl = 0, if n is even, and the cycle of

values 0, 1, 0, -1 repeats itself.

This expansion is valid for all
values of x.

LELOIINE - must be in radians

a f(x) =sinx = f(O) = sin0 =0
f'(x) = cos x = F'O) =cos0 =1
t'(x) = =sinx = f0) = =sin0 =0
“(x) = —cos x = f"(Q) = —cos0 = -1
"(x) = sinx = f"™0) = 5n0 =0
1 ~1 ) A
505mx-\+3|—\ +5| 7|x?+ +{2f‘+'|)1'\h T+
=X %\‘3 + é.\c’ %x? +

SRR ST S T
b sin10° = singz ~ 75 - 7 (75)

r 0174532925 - 0.0008866096
~ Q173646529

in expansions of trigonometric
functions.

This estimate is correct to 5 decimal
places; even using sinx = x, the

L7
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1

1 Use the formula for the Maclaurin series

) s m The binomial expansions of (1 + x)",
and differentiation to show that:

where n is fractional or negative and
a (l-x)'=l+x+x2+. +x+.. |x| < 1, are the Maclaurin series of the
2 3 function.

Tareias X &
h I+A_1+2_8+16_.-.

2 Use Maclaurin series and differentiation to show that the first three terms in the series
; —_— x?
expansion of e""~are 1 + x + el

® 3 a Show that the Maclaurin series of cosxis 1 - TR T (-1) 20! + ...
b Using the first three terms of the series, show that it m This expansion is
gives a value for cos 30° correct to 3 decimal places. valid for all values of x.

4 Using the series expansions for e* and In(1 + x) respectively, find, correct to 3 decimal places,
the values of:

ae b ln(%)

5 Use Maclaurin series and differentiation to expand, in ascending powers of x up to and
including the term in x4,

a el b In(1+2x) ¢ sin?x

@ 6 Using the addition formula for cos (4 - B) and the series expansions of sin x and cos x,
show that

51

cos(x—lr-)z—l—(l+x—=§——£+l4+ )
T4 2 2 6 24

() 7 Given that f(x) = (1 - x)* In(l - x),

a show that f"(x) =3 + 2In(1 = x) (2 marks)
b find the values of f(0), f'(0), f”(0), and f"(0) (1 mark)
¢ express (1 = x)? In(1 - x) in ascending powers of x up to and including the

term in x3. (3 marks)

8 a Using the series expansions of sin x and cos x, show that
; 3
3sinx —4xcos X + X =5x> - 55X° + ... (5 marks)

b Hence, find the limit, as x — 0, of 230X = 4;:;‘3"5 et (1 mark)

L3



Chapter 2

® 9 Given that f(x) = Incos x,

a show that f'(x) = ~tan x (2 marks)
b find the values of f'(0), £"(0), f"(0) and £ (0) (1 mark)
¢ express Incos x as a series in ascending powers of x up to and including the term

in x4 (3 marks)

- » i . - T .
d show that using the first two terms of the Maclaurin series for In cos x, with x = 7+ gives a

2 2
value for In 2 of ";% (l - g-é) (2 marks)

10 Show that the Maclaurin series for tan x, as far as the term in x?, is x + %x-‘ + %xi. (5 marks)

Challenge Problem-solving

The ratio test is a suFﬁcient condition for the convergence of an infinite
. If lim =1 or does not
series. It says that a series Za, converges if lim|— Sonl 1, and diverges
r=1 exist then the ratio test is
inconclusive.

Use the ratio test to show that
a the Maclaurin series expansion of et converges forall x e R

b the Maclaurin series expansion of In (1 + x) converges for -1 < x < 1,
and diverges for x > 1.

m Series expansions of compound functions

You can find the series expansions of compound functions using known Maclaurin series. In the last
exercise you found the Maclaurin series of simple compound functions, such as e**and In (1 + 2x).
However, the resulting series could also be found by replacing x by 3x or x by 2x in the known
expansions of e¥and In (1 + x) respectively. When successive derivatives of a compound function are
more difficult, or when there are products of functions involved, it is often possible to use one of the
standard results.

® The following Maclaurin series expansions are given in the formulae booklet:

2 r
ce'=14+x+2 4. +%+... forallx
2! r!
3 r
. lﬂ(1+.¥) _xi+x?_...+{_1)r+1x?+..’ _1<x$1
x xzi‘-l-l
sinx=x- 3 L T cee + (-1)" (z +1)| for all x
'] - _'_r_?.-. .'!'.:._ l_.._z..._
cosx=1 TR v + (-1) @r )'+ for all x

x2r+1
2r+1

arctanx = x——+%-—...+(—1)" + e -1sx=<1

3
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Example @

Write down the first four non-zero terms in the series expansion, in ascending powers of x,
of cos (2x2).

(2x2F  (@2x%4  (2x%)°

ot A et
2 <

= 1 =2x%% X% ——=x"+ ..
3 45 | m Make sure you simplify the
coefficients as much as possible.
Example @
v1+2x

Find the first three non-zero terms in the series expansion of In (1_—37() and state the values of

cos(2x?) =1 - Substitute 2x2 for x in the above series for cos x.

x for which the expansion is valid.

— Using ln(%) =lna-Inh

!n(-v— ——:'- =yl + 2x = In(1 = 3x)

1

= Linfl + 2% = Infl = 3%) Using Ina* = 3Ina

2_.2 252
3In(1 + 2x) = ;‘(2-\' = '{“5")' 4 gﬂ —eof = 2x =1 Substitute 2x for x in the

expansion of In(1 + x).

4 ..

X=X+ 5x° .. —-;,— <xs= -é .
) Problem-solving

o =3xF + E3x° o S =8x =< You are substituting 2x into the

In(1 - 3x)

I
—
|
w
L
s

e 3 series expansion of In (1 + x), so
= 3y - 2x2 — 9x3 - texcd the series is now olnly validlfor
72 ; 2 —l<2x=<lor—<x<3z
5o | VEjé’g—{_\‘w(\—tE-&ng— )
’ Substitute —=3x for x in the
—{=8x - gxg - 9x3 = ), _% & e _rﬂ expansion of In(1 + x).
=4x+5x2 + 2x3 4 b2 gl You need both intervals to be

- satisfied. This is the case for
Sex<i
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Example @

Given that terms in x" with n > 4 may be neglected, use the series expansions for e¥ and sin x to

show that
;o x x
eV ] 4 x4+ 5 -
- 2 8
X ) - Only two terms are used as the
SINY =X =" =
3] next term is kx>,
So esiny = 6|..\'—'-;—:+..._|
= ef X 7% X .. liseeas = et yeh

:(1+_\~+£+£+£+,..](T+(-£]+,,‘)... - : X3
o g " 24 i B 1 Substltute—?fommthe

¥+ 3> ¥ expansion of e~.

Simplify as much as possible.

® 1 Use the series expansions of e*, In(1 + x) and sin x to expand the following functions as far as the
fourth non-zero term. In each case state the values of x for which the expansion is valid.

1 el\' % e.‘n‘
- . For part f, write 2 + 3x as
c et d In(l -x) ( 3x)
; 2(1+=%).
e sin (3) f In(2+3x) .
2 a Using the Maclaurin series of In (1 + x), show that
1 +x X! %
ln(]_x)=2(x+~3—+~5~—+...),—1<x<l (4 marks)
b Deduce the series expansion for In { X cl=mwel (2 marks)

- %
¢ By choosing a suitable value of x, and using only the first three terms of the series from
part a, find an approximation for In (%) giving your answer to 4 decimal places. (2 marks)

d Show that the first three terms of your series from part b, with x = %, give an approximation

for In 2, which is correct to 2 decimal places. (2 marks)
3 Show that, for small values of x, e>* — e & 3x + 3x2. (4 marks)
4 a Show that 3x sin2x — cos 3x = =1 + a2 - x4 — .. (5 marks)

3xsin2x —cos3x + 1
2N
x2

b Hence find the llm0 (1 mark)
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Series

® 5 Find the series expansions, up to and including the term in x*, of:
a In(1+x-2x?%)
Factorise the quadratic first.

b In(9+6x+ x?)

and in each case give the range of values of x for which the expansion is valid.

6 a Write down the series expansion of cos 2x in ascending powers of x, up to and including the
term in x®, (3 marks)

b Hence, or otherwise, find the first four non-zero terms in the series expansion for sin® x.
(3 marks)

7 Show that the first two non-zero terms of the series expansion, in ascending powers of x,
of In(1 + x)+ (x - 1)(e¥ - 1) are px? and ¢x*, where p and ¢ are constants to be found.

(6 marks)
8 a By considering the product of the series expansions of sin x and (1 - x)~2, expand (lSif ;)2
in ascending powers of x as far as the term in x4, (6 marks)
b Deduce the gradient of the tangent, at the origin, to the curve with equation y = %
(3 marks)
® 9 Use the Maclaurin series, together with a suitable substitution, to show that:
a (1=-3x)In(1+2x)=2x-8x2+ E_Tﬁx?' - 12x%+ ...
b e>sinx=x+2x24 x4 x4+ ...
e Vi+xler=1-x+x2-3x3+¢xt+ ..
10 a Write down the first five non-zero terms in the series expansions of e_%: (3 marks)

1 32

b Using your result from part a, find an approximate value for f ¢ 2 dx, giving your answer to
3 decimal places. B (3 marks)

3(p?-3
11 a Show that e”*sin 3x = 3x + 3px2 + #Jﬁ + ... where p is a constant. (5 marks)

o

b Given that the first non-zero term in the expansion, in ascending powers of X,
of e sin 3x + In (1 + ¢gx) - x is kx*, where k is a constant, find the values of
P, qand k. (4 marks)

12 f(x)=e*"P*sinx, x>0
a Show that, if x is sufficiently small, x* and higher powers of x may be neglected.

9

fix)~1+x+ %: (5 marks)
b Show that using x = 0.1 in the result from part a gives an approximation for f(0.1) which is
correct to 6 significant figures. (2 marks)

LT



Chapter 2

13 y=sin2x - cos2x

4

Y
a Show that P 16y (4 marks)
b Find the first five terms of the Maclaurin series for y, giving each coefficient in its simplest
form. (4 marks)
Challenge @ A light year is the
The Lorentz factor of a moving object, 4, is given by the formula distance light travels in
1 one year.
“'}J =

1-p32
where /3 :% is the ratio of v, the speed of the object, to ¢, the speed of
light (3 x 10¥m ).

. . " : 1
a Find the Maclaurin series expansion of v =
1 =32
powers of 3 up to the term in 3* 1-4

The theory of special relativity predicts that a period of time observed

as T within a stationary frame of reference will be observed as a period

of time _E; in a moving frame of reference.

!

in ascending

A spaceship travels from Earth to a planet 4.2 light years away. To an
observer on Earth, the journey appears to take 20 years.

b Use your answer to part a to estimate the observed journey time for
a person on the spaceship.

¢ Calculate the percentage error in your estimate.

d Comment on whether your approximation would be more or less
accurate if the spaceship was travelling at three times the speed.

Mixed exercise o

2 : SRS
1 a Express TR partial fractions. (1 mark)
& 2 Tn’ + 25n
b Hence:show that ;2 r+2r+4 12n+3n+4) (Smarks)
2 a Express : in partial fractions (2 marks)
dr - 1)dr+ 3) '
b Using your answer to part a and the method of differences, show that
! 4 4n
Zl (4r - Didr +3) 3dn+3) (3marks)
200

¢ Evaluate > giving your answer to 3 significant figures. (2 marks)

F= 10[}(4?"‘ 14 + 3)

LR



Series

@ 3 a Showthat #+ 1P =G =13=6¢2+ 2. (2 marks)
b Using the result from part a and the method of differences, show that
> 2 =%n{n +1)2n+1) (5 marks)
r=1
4 Prove that i . = fRGRED) where a and b are constants to be found. (5 marks)
S+ Dr+3) 3n+2dn+3)’ '

n

5 Prove that Z{{r + 1Y = (r=1)))=an’ + bn* + cn + d, where a, b, ¢ and d are constants to
be found. "~ (5 marks)

d"y

6 a Given that y = ¢!, find an expression, in terms of y, for w

8

d
b Hence show that —1; at x=In32is>
dx 4

7 a For the function f(x) = In(1 + e"), find the values of {'(0) and f"(0).
b Show that f"(0) = 0.

¢ Find the series expansion of In (1 + ¢¥), in ascending powers of x up to and including the
term in x°.

8 a Write down the Maclaurin series of cos4x in ascending powers of x, up to and including the
term in x°. (3 marks)
b Hence, or otherwise, show that the first three non-zero terms in the series expansion of

; ) _ 16 128
sin?2x are 4x2 — 3x* + 55 x6. (3 marks)

9 Given that terms in x° and higher powers may be neglected, use the Maclaurin series for e* and

2
cos X, to show that e*»* =~ e(l - ‘2 + %) (5 marks)
(E/P) 10 Given that |2x| < 1, find the first two non-zero terms in the series expansion of
In((1 + x)*(1 - 2x)) in ascending powers of x. (5 marks)

(E/P) 11 Use differentiation and Maclaurin series, to express In (sec x + tan x) as a series in ascending
powers of x up to and including the term in x3. (5 marks)

® 12 Show that the results of differentiating the standard series expansions of e, sin.x and cos x
agree with the following:
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Chapter 2

: x> xt 2l
(E) 13 a Given thatcosx=1- 57+ g7~ - show thatsecx =1+5 +57x0 + ... (4 marks)
. S . ; 3 X2 . X
b Using the result found in part a, and given that sin x = x — TG find the first three
non-zero terms in the series expansion, in ascending powers of x, for tan x. (4 marks)

(E/P) 14 By using the series expansions of ¢ and cos x, or otherwise, find the expansion of
e*cos 3x in ascending powers of x up to and including the term in x°. (5 marks)

@ 15 Find the first three derivatives of (1 + x)?In(1 + x). Hence, or otherwise, find the expansion of
(1 4+ x)*In(1 + x) in ascending powers of x up to and including the term in x°. (5 marks)

(E/P) 16

Expand In (1 + sin x) in ascending powers of x up to and including the term in x*. (4 marks)

B

m

G

b Hence find an approximation for f‘ln (1 + sinx)dx giving your answer to

3 decimal places. R (3 marks)
3
17 a Using the first two terms, x + %, in the expansion of tan x, show that
-2 3
gnx =] +x+%+1§—+... (3 marks)
b Deduce the first four terms in the series expansion of e #"~, in ascending powers of x.
(3 marks)
2 44
® 18 a Using Maclaurin series, and differentiation, show that In cos x = —% = -;(—2 +..
b Usingcosx =2 0053(%:—) — 1, and the result in part a, show that
. x_xt
In(l +cosx)=1In2 - 7 ~ogt
d4y
a Show that W =81y. (4 marks)
b Find the first three non-zero terms of the Maclaurin series for y, giving each coefficient
in its simplest form. (3 marks)
¢ Find an expression for the nth non-zero term of the Maclaurin series for y. (2 marks)

Challenge

Given that the Maclaurin series of e¥is valid for all x € C, show, using
series expansions, that e'* = cos x + i sin x.
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Summary of key points

1 If the general term, u,, of a series can be expressed in the form f(r) - f(r + 1)

then iu, = Zn:(f(r) - f(r + 1)).
F=1 r=1
so u, =f(1) - f(2)
u, = f(2) — f(3)

u; = f(3) — f(4)
u,=fn) —fln+1)
Then adding En: u,=f(1) = f(n+1)
r=1

2 The Maclaurin series of a function f(x) is given by

fx) = f(0) + f'(0O)x + @ X2 4 fu'i.(lo)

2l e

The series is valid provided that f(0), f'(0), f*(0), ..., f(0), ... all have finite values.

3 The following Maclaurin series are given in the formulae booklet:

2
e-f=1+x+%+...+%r+... forall x
X X re1 X o
ln(1+x)-x-~2—+—3—-...+(-1) o 2 l1<x=1
inye X X BN A
sinx =x -3+ e+ (1) (2r+1)!+... forall x
-2 & 2
cosx:l—-%+%—...+(—-1)’(ch—r;'+... forall x
3 5 1
arctanx:x-——“g—w-’g——...+(—1}’§:1+... “1l=sx=<1

B1



Methods in calculus

After completing this chapter you should be able to:
® Evaluate improper integrals -» pages 53-58

® Understand and evaluate the mean value of a function
— pages 58-62

® Integrate rational functions using trigonometric substitutions
- pages 62-69
® [ntegrate using partial fractions - pages 69-73

Prior knowledge check

1 Find:

a b fxzexdx c J‘Slnxcosx

1+ 3sin¢x
« Pure Year 2, Chapter 11

V3 +x2

d
2 Find d—y— in terms of x and y for the following:
%

a x2+y%=1 b 5x2+xy+2y2=11

. The lowest speed necessary
for an object to escape from a
1 gravitational field is called the
escape velocity. You can use
improper integrals to calculate
escape velocities.

C x=tany ¢ Pure Year 2, Chapter9 |

3 Express in partial fractions:
1 b 2x-1 e 3x-2
xlx+1) x%-4 2x2+3x+1
4 Pure Year 2, Chapter 1 §

Y/ &/




Methods in calculus

m Improper integrals

If a function f(x) exists and is continuous for all values in the interval [a, b] then the definite integral

b
f f(x) dx represents the area enclosed by the curve y = f(x), the x-axis and the lines x =aand x = b.

VA

y = f(x)
\ 5 The interval [a, b] is all the real

numbers x satisfying the inequality a = x < b.

A .[F’(x)d_r

0 b X

=

In this section you will consider integrals where one or both of the limits are infinite, or where the
function is not defined at some point within the given interval. These are called improper integrals.
In these cases it is still possible for the function to enclose a finite area.

VA VA

i 3 :
: % :
0 1 g 0 3 £
The area bounded by the curve y = —L, The function f(x) = —lf is not defined at x = 0. However, the
X v
the x-axis and the line x = 1 is finite. area bounded by the curve y = —, the coordinate axes and

I
WX

Thisareaisr nted by the i er
SRR ISR PR the line x = 3 is finite. This area is represented by the

i i 3
|ntegralfl _rad”x' Tmproperintegralj; %dx.

b
® The integral J; f(x) dx is improper if either: m {fan improper integral exists then it
* one or both of the limits is infinite is said to be convergent. If it does not exist it is

* f(x) is undefined at x = @, x = b or another said to be divergent.
point in the interval [a, b].
You can determine whether improper integrals are convergent, and evaluate them if so,
oo f
by considering limits. To find I = f e~*dx, you need to consider the integral f e~*dx, for some finite
0 0

value . If this integral tends to a limit as 1 — oo then I is convergent and equal to that limit. If it fails
to tend to a limit, then 7 is divergent.

[~}



Chapter 3

VA

0

As t — oo,

I o0
f E‘-"d.r—+f e~*dx
0] 4]

t
f e~*dx = {—e'-"][’] =—p14+1
0

w¥

f
Sincee™" — Q0 ast — oo, the integra{fﬂ e¥dx — last — oo

So L e~*dx is convergent and equal to 1.

Evaluate each improper integral, or show that it is not convergent.

b flm“]{ dx

1

i

Im-rooa*a!—'rm!so[

lim

f—soa

[im
[—soe

1
—=dx
;X2

1}’
Tkl

!Ii_m“( —} + 1)

1

L
dx = Jim f. _d

lim [In X1}

lim(int = In1)

converge.

1

w You can use limit notation to write:

o t
L e*dx=lim | e¥dx= }Lrlqo{—e" +1=1

f—4oa

Replace the infinite limit by ¢, and take the limit

asi — oo,

@ o
So [ ;d.\' converges and [ 2 dx =
.I b al s

1
;cl.!c does not

1

T Qast— o0
The area under the curve y = %from 1 to infinity
X

is finite and is exactly equal to 1.

Va

0

@ Explore the integral f:}z dx O Make sure you show the limiting

using GeoGebra.

[~V

process clearly in your working. You can't just

writef %dx: In oo = oo,
1 o



Methods in calculus

You need to use a similar limiting process if the function you are integrating is not defined at one or
more points in the interval.

Evaluate each integral, or show that it does not converge.

1 2 .
1 X
a f_adx b | —dx
g ¥ o V4 —x?
| 14 11 _ 3 B ——
a f —dx=lim | —=dx y==s undefined for x = 0, so replace the lower
0 '{:? 2 =0, .\'2 E X
11" limit with ¢ and take the limitas ¢t — 0.
= lim [__}
—ol X,
1
= lim(~1+7)
1 "
—1+?—»oo35f—~0.5of0:‘_2dxdos5 }——rooasr—aD
not converge.
bfg L e X
—dx=in] | T——5dX e i x=
W 2 d 4 — x2 ¥ e is not defined for x = 2, so replace

the upper limit with ¢.

1l

;hmz |—v"|4 - x2 ]-rj

v Jl_rr}f—ﬁdr - 17 = [-V4))

= lim(2 - V4 - 12) | liral/G =) =0
- J =2

————— dXx converges and
L 1"..4 — );-{ CONW I”q an
X
Tl =2
fo V4 — x2 ¥

If both limits of an integral are infinite, then you need to split the integral into the sum of two
improper integrals. In other words, you write m =
f f(x)dx = f f(x) dx + f f(x) dx for some value ¢. Ramot writef fl dx as

If both of these integrals converge, then the
original integral converges, but if either diverges,
then the original integral is also divergent.

a Find [xe~'dx. b Hence show that f xe~* dx converges and find its value.

a —C
lim .Lf(X) dx. You must split it into two separate

integrals to determine whether it converges.
—» Review Exercise 1, Challenge Q3

a let I'= [xe*dx

Consider y = e™* Try differentiating e~".

dy 3

- = —2xe™ - . L

dx The —2x comes from differentiating —x2.

S0 I=-—5e™ +¢
£ “— Use the reverse chain rule.

[~



Chapter 3

e : 0 : Problem-solvin
b Split f xe™ dxup as J xe™ dx + f xe™dx 8
Lo —oa o}

» You can choose any point at which to split
Considar Iu_\-g—.v- dx: e theintegral up, but choosing a special
i

value like 0 will often make evaluating the
e 1 __.20 o B integral easier.
L xe™ dx = [—-é-e ¥ ]_, = =g b g !
So Jim J xe™dx = |im [“'E +ze ) = -1 To find the integral between —< and 0, you
L1t I i 2
L should find the integral between —r and 0
"0 ) a . "
So i xe™ dx converges and f Xe™.dx = -3 and then let 7 — .
! 2 T s e
Similarly, consider [ rE gy o — Use [xedx=—3e* +¢

L-“E""?d-’f =[-tetlo=-te"+F ——— m You need to check that
both the integrals converge before you
can determine that the original integral

CONVErges.

)
i - = - $ -t G i
So Jim [ xe~dy = fim(~ge + 4) = 4
So L xe™ gy converges and L xe=dx = %
To find the integral between 0 and «, you
. should find the integral between 0 and ¢
and then let ¢ — .

Since both integrals converge, we know that

f xe™ dx converges and

o B “ L Use [xe*dyx=—le*+c¢
‘[ X dy= i xe™dx + f xe ¥ dx f 2

. ]
— _1_ .1 = ﬂ - ! i
=—z+3= () App[y Imf(x) dx= Lf(x) dx + I f(x) dx

1 Find the values of the following improper integrals.

&0

2 f. #dx b f "% dy ¢ f:e--"-vdx

2 For each of the following, show that the improper integral diverges.

o . s I o 8_‘,‘
X - e
a L evdx b : ﬁd.\ ¢ J;) Ty o dx

3 For each of the following, show that the improper integral converges and find its value.

I ) 3 1 In3  av
a fu»/fd“\ b fu »f'—2—3xdx c fn e-“—ldx

® 4 For each of the following, determine whether the integral converges, and if so, find its value.

2 1 3 y—=1 ' T o
) f—‘ VIxl = b f—w’md" . J:; e

LA



Methods in calculus

® 5 a Find [ '3 Sdv. (2 marks)
- 3x)2

- 1
b Hence show that f_wm dx converges and Make SR Ol ShEw e

find its value. (3 marks) limiting process clearly in your working.
(®) 6 a Find [x2e~'dx. (2 marks)
1
b Hence show that f_ x2e* dx converges and find its value. (3 marks)
: I o
(® 7 a Find f ¥ . (3 marks)
b Hence show that fl %dx is divergent. (3 marks)
® 8 a Find [(lnx)2d.x. (2 marks)
Hence show that:
1
b f (Inx) dx is convergent. (2 marks)
0
C L (Inx)*dx is divergent. (2 marks)
* 6x
@ 9 Evaluate | sm———dux. (4 marks)
o v4 — x2
20 _ 5 _ 20D =
(E/P) 10 Evaluatef £ 'L%- X 4. (5 marks)
ko) V& — X°

(E/P) 11 The diagram shows the curve with equation y = In x.
Find the shaded area enclosed by the curve and the coordinate axes.
You may assume that xInx — 0 as x — 0. (5 marks)

@ 12 a Explain why L *tan x dx is an improper integral. (1 mark)
b Show that L *tanx dy is divergent. (3 marks)

g7
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f—\-=!n€ 4 ram ffm%( 4 )(@) Transform the integral by substituting u = e*
w2 1ok 88 e A1 SRR — and g%“ = e~ and substituting the limits.

n 1 X
B 4J2 1+ mud”
Using partial fractions: .
1 A B To calculate 4f2

1

(1 + wu
use partial fractions.

du it is necessary to

wll + ul u+T+tf
So Al + w) + Bu =1

Whenu=0, 4 =1. )
Eauating « tetinsy A B= 0, 5o B =1 . Find the values of 4 and B.

o] =] (L= 1o)
b (14 ulu ;= o \u L

= 4nu - Inlu + 1% Integrate with respect to u.

=4{In6.=In7)=(In2 = In3)) ———
=4 ni2 1

=4 In%.: J - Simplify using the laws of logarithms.

Evaluate the integral using the limits.

S0 the mean value of fon [In2, In€] is

- b
| o 4In3 Find — f f(x) dx and use the laws of
T ﬂ.(,q_ml___‘, = el b—ad,
nG —In2 7 In3 = . "
logarithms to simplify.
In& 4 nG 4 né
e The original integral can be separated.
- 4 dx = [4x]S
=46 -2 L
) e Calculate the new integral.
=4In3

Calculating the mean value,

1 J-I:\G( 4 J
= -+ 4 ;
IHS In2 1 + 6_" -~ -

5 n
ai JOg AP Problem-solving
n

In3 " In3
42 Every value of f(x) in the interval has increased
=- r;f’ + 4 by 4, so the mean value has increased by 4.
n

c -f(x) is a reflection in the x-axis of f(x).
The mean value of f(x) over the interval
4inZ
(In2, In6] was —5-
Therefore, the mean value of —f(x) over the

4 In%
interval [In 2, InG] is e

In the example above, you saw that geometric considerations can be used to find mean values of
transformed functions, if you already know the mean value of the original function on the same interval.

a0



Methods in calculus

If the function f(x) has mean value f over the interval [4, 5], and & is a real constant, then:

® f(x) + k has mean value f + k over the interval [q, 5] You cannot deduce
m /f(x) has mean value if over the interval [a, 5] the mean value of f(-x) or f(kx) in

- : this way.
® —f(x) has mean value —f over the interval [«, b].

Exercise @

1 For each of the following functions f(x), find the mean value of f(x) on [0, 1].
| .
a f(x)=1 b fix)= = c f(x)=e*+1

2 Find the exact mean value of f(x) over the given interval.

3 5 e =
o 1 [0, 2] b f(x) = cos’xsin’x; [0, El

¢ o= xne7*[1,3] d fix) =

a fix)=

) G+oaxsp 03
e f(x)=(secx —cosx); [0, Z]'

3 flx)y=x3=3x2=24x+ 100
a Find the coordinates of the turning points of f(x).
b Sketch the graph of y = f(x).

¢ Without calculation, state an upper and lower bound on the mean value of the function on
the interval [-2, 4], giving a reason for your answer.

d Calculate the exact mean value of f(x) over the interval [-2, 4].

® 4 Find the exact mean value of fix) = iial il over the interval [0, E]. (4 marks)
cos2x + 2 2
@ 5 Find the exact mean value of fix) = xvVx + 4 over the interval [0, 5]. (4 marks)
@ 6 Find the exact mean value of fix) = x sin 2x over the interval [0, %] (4 marks)
e Sx
T = DG+
a Show that the mean value of f(x) over the interval [1, 5] is %ln%ﬁ (4 marks)

b Hence, or otherwise, find the mean value over the interval [1, 5] of f(x) + Ink where k is a
positive constant, giving your answer in the form pln ¢, where p and ¢ are constants and

¢ is in terms of k. (2 marks)
8 flx)=x(x?-4)4
a Show that the mean value of f(x) over the interval [0, 2] is -2%9 (3 marks)

b Use the answer to part a to find the mean value over the interval [0, 2] of =2f(x). (2 marks)

9 f(x) = In(kx), where k is a positive constant.
Given that the mean value of f(x) on the interval [0, 2] is -2, find the value of £. (4 marks)

A1



Chapter 3

® 10 Prove that if f(x) has mean value m on the interval [a, b], then f(x) + ¢ has mean value m + c.

11 f(x)=- : : m This is an improper integral.

Find the exact mean value of f(x) on the interval [0, 2]. (6 marks)

® 12 Use geometric reasoning to explain why the mean value of f(x) = sin®x on the interval [0, 2] is 0.

13 fix) = __cosxy

(2 + sin x)?
a Find [f(x)dx. (4 marks)
b Hence show that the mean value of f(x) over the interval |0, STN] s — " 3?;)ﬂ[3 +4V3). (2 marks)

¢ Hence, or otherwise, find the mean value, over the interval [0%‘rr ,of f(x) + 3. (3 marks)

® 14 a Sketch a graph of f(x) =1 - 3x — 2x2, finding the coordinates of any turning points.
a+l
b Calculate f f(x)dx fora € R.

[}

¢ Find the maximum possible mean value of f(x) on any real interval of length 1.

m Differentiating inverse trigonometric functions

You can differentiate the inverse trigonometric functions implicitly.

d e oo
Show that dx(arcsnm)—

i}

- Use y = sin (arcsin x) = x.
REL y S A |7 Differentiate implicitly. You could also differentiate
then siny =x dy 1
x = siny with respect to y then use — = —
dy & X 2 ¥ dx dx
cos_l’a';_ =1 dy
d' &« Pure Year 2, Section 9.6
¥ 1
dx ~ cosy
g ? - Divide by cos y.
1
y1 = sin?y Use cos? y =1 — sin? y and that cos y = 0 when
U SAR i yis in the range of arcsin, i.e. —— < y < —
i 2 2
By 1
S0 e
ax [~ 52 =
Y Vi-x Problem-solving
dy
Alternatively, since — = +——— you can
Ix V-t

conclude the sign is positive since the graph of
y = arcsin x shows that the gradient is positive at
all points x.
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Methods in calculus

You can use similar methods to obtain the following standard results.

d - 1 ]
B —{arcsinx)=——
d.t{ ) J1 - x?
- d (arccos x) = — 1 You should learn these results, but also be able
dx v1—x2 to derive them as in the example above.
d 1 d d
= — (arctanx) = i g i ) e ;
dx ( ) 1+x2 Notice that pros (arcsin x) e (arccos x).

@ Recall the domain and range of each of these
inverse trigonometric functions:

Function Domain Range
arcsinx -1, 1] [—%,%
arccos x (-1, 1] [0, 7]
arctan.x (—o0, ) (—%%)

« Pure Year 2, Chapter 6

Example o
dy

Given y = arcsin x?, find d_
-

a using implicit differentiation

: : d ;
b using the chain rule and the formula for ——arcsin x.

dx
a siny=x? Use sin (arcsin x) = x.
ay
cosy gy = 2x Differentiate.
dy 2x e
e —— Divide by cos y.
dy :
P fLé Use cos?y = 1 —sin® y and that cos y = 0 when
i \,."1 - SIN=) I_ T T
- s Yt et
WA t— yisin the range of arcsin, i.e. 5 =S5
dy _ 2x
e dx 1 = x4
. e o
AT — Sub§tltute = x? to get arcsin x? in the form
arcsin x.
e 2L = pegna Ba b
n — - Cdan -, -
X e at /1 — 42 . .
g Vil =4 L_! bifferentiate ¢ and I
dy dy dt
Eh S
X ! % ;
LR l—— Use the chain rule.
__2X
V1= x4

A3
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Example o

; 1 -x dy
Given y = arctan , Hod—
< 1 + dx
tan?—j_'v Use tan ( =x
D T se tan (arctan x) = x.
o dy =l #.x) = =% ; ’ ; : 1-x
secty oL = 0+ 22 Differentiate using the quotient rule on T
2 o
=G Simplify.
So -d—l S x (— 2 ) Divide by sec®
dx sec?y 1+ x)2 i i
X i - X (—— 2 —-) Use 1 +tan? y = sec?
T 1+ tan?y (1 + x)2 s ”
1 ( 2 ) : 1-x
- — —_— - S ==
(1 T \)L 2 Substitute tany = 3=
1+ x

B (1 + x)? 2
-{T+,\‘)2+f1—xJ2x( )

R BN Problem-solving
2+ 2x°

You could also use the chain rule and the formula

Cancel (1 + x)2.

for d (arctan x).
dx

Exercise @

1 Use implicit differentiation to differentiate the following functions.

a arctanx b arccos x ,
S m You can check your answers by using the
¢ arccos x= d arctan (x* + 3x) chain rule as well as the results stated earlier in
: ( l) the section.
e arcsin |
2 Differentiate y = (arccos x)(arcsin x)
. . 1 + arctan x
® 3 Differentiate y = e (4 marks)
I — arctan x
4 f(x)=arccos x + arcsin x
— , L
By considering f f'(x)dx, prove that fix) = 2 for all values of x. (4 marks)
5 Differentiate with respect to x:
a arccosx b arctan% ¢ arcsin3x d arcot(x+1)
e arcsin(l — x?) f arccos x? g e‘arccosx h arcsin xcos x

i x?arccos.x j gpmtanx

(YA



Methods in calculus

dy
@ 6 Given that tan y = xarctan x, find d_Jx, (4 marks)
® 7 Given that y = arcsin x, prove that
~d¥y dy
(1-x?) ot i (6 marks)

8 Fincli an equation of the tangent to the curve with equation y = arcsin 2x at the point where
X=3

9 Find the derivatives of the following functions.

1
a (arctan x)? . ¢ arctan (arctan x)
arcsin x
® 10 Sketch the graphs of the following:
a arcsin (arcsin x) b arccos (arccos x) ¢ arctan (arctan x)
® 11 Prove each of the following: @ .
When taking a square
z e 1 g ‘q .
a sin(arccosx) =1 — x? b cos(arctan.x) = - - root, you should consider the
V14 x? definitions or graphs of the
| T inverse trigonometric functions
€ SeC(arccos x) = d sin(arcsec x) = VJ 1 -—= to determine the sign.
; x2

@ Integrating with inverse trigonometric functions

You can use the results from the previous section to integrate functions of the forms

and — 4
vat = x2

at + x?

By using an appropriate substitution, show that f% dx = arcsin (E) + ¢, where a is a positive
fQé—-X*
constant and |x| < a. \
f' s 1 5 dx = f% dx
yac —=x (o %
\-'”L(W -] ]
l
=u f —L—ax
| b =
{1-(3)
_ 1 _— X dx
= f —clu Use the substitution # == and du = —
V1 — u= a a
=arcsinu + ¢
| Recall that i{arcsin X = !
dx V1-x?

v X
- 3[’C5H‘1(E) g

A5G
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The following two results are given in the formula booklet. You can quote them when calculating other
integrals, but you should also be able to derive them using substitution as in the example above.

: 1 X
= Imdx_;arctan(a) +c¢,a>0,|x|<a

1 - Wi A
L} fﬁdx _arcsm(a) + ¢

Find f

dx.
5+ x2

__d\—4f dx
5 + x? + X2

= 4(Larc:tan( =] )) +c Use f e = dx:larctan(f) + ¢ with a = /5.
VD y 5 + X a a
= %arctan(%) +C
Example @
1 Tl
a Find f —__idx b Evaluate f * ————— leaving your answer in terms of 7.
25 + X RN e %
J' 1 Iy J' 1 ) | You need to write 25 + 9x2 in the form
a 7951..\ = Q_id.\ 5
25 + 9x2 92 + x2) kla® + x2).
= % % arctan % 1
('3“) (*3:} l Use ——arctan( )+r. with a—%
) @+ x2 a
= %a”ctan( %) + ¢
b |4 ?d.x'=f~1 T % Write 3 — 4x2 in the form k(a2 — x?).
B W3 = 4xE g \-‘M(% 4= _,:2} ! o (a )
: .
= 1 21 _ i
%) & *(.—’? - x2 ) X /3
~7 ViE T Use f dx = arcsin(-) +cwitha=—
i3 Va? = 2 a 2
=1 aresin —2—’()] :
gl i
v3 /3
- Jarcsin(3) - Saresin(-}
T<arsiny<Z
=T _ (_1) 2 2
e - s0 arcsin () = ¢ and aresin (1) = -
'3
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Example @

Find jL‘id:{.

V1 —4x?
" Problem-solving
‘;"'id_'cz [— 2 d\+4[;d.x ) ) .
W1 = 4x® " W1 = 4x? V1 = 4x* The integral can be split into a fraction which
— . x ) ’ = can be integrated using the ‘reverse chain
o calculate | N dx use the substitution rule’ and one that looks like those covered
o= Fne AR above.
du = —8x dx
J‘ X A% 1 Substitute for x and dx and adjust for the
g P 5 —du
Vi — 4x2 v constant.
£ ~éfu“~1' clu
= —gu% + ¢
Rewrite in terms of x by resubstituting
= =1 = 4x? + ¢ g=1 =42
4 [ ! dx =4 [ ! dx : -
YT - 4x2 4[ e — Write 1 — 4x2in the form kla? — x2.
=2 ] — ! adx
yq—2°
= 2aresin2x + ¢ Use [ dx = arcsin(i) +cewitha= 3
“Jat - x? a 2
So f i dx = 2arcsin2x — =1 — 4x2 + ¢
v T - 4x?
1 Use the substitution x = ¢ tan f to show that f . I ~dx = %arctan( ) +C
a* + x*
2 Use the substitution x = cos 6 to show that f dx = —arccosx + ¢
3 Find:
3 dx f 4 f 1 f 1
X b dx e l—=dx d dx
V4 - X2 5+ x? V25 - x2 )
® 4 Find f dx, giving your answer in the form 4 arctan (Bx) + ¢ where ¢ is an arbitrary
constant and A and B are constants to be found. (3 marks)

a7
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® 3
6
® 7

(E/P) 8

EP) 11

EP) 12

AR

Show that f;,_

V3 —4x°
constants to be found. (3 marks)

dx = Parcsin (Qx) + ¢ where ¢ is an arbitrary constant and P and Q are

Evaluate:

3 2
© 2 f’ 3 f’ 1
a =dx b | —=——=dx ¢ —— X
fl 1 + x* [\fl+4x2 _|v21—3.!€3

L T
Ty dx = T (4 marks)

V3
Show that f i

24 3x
1 +3x2

Show that [fix)dx = Aarctan(/3x) + BIn(l + 3x2) + ¢ m Startby splitiing the Fracton
where ¢ 1s an arbitrary constant and 4 and B are into two separate integrals.

constants to be found. (4 marks)

flor) =

2x -1
V2 = x2

fix) =

Find [f(x)dx, giving your answer in the form A arcsin (L) + ByV2 - x? + ¢ where ¢ is an

IB)
arbitrary constant and 4 and V2

B are constants to be found. (4 marks)
8x~ 3

flx) =

= e

Find [fix)dx, giving your answer in the form A In(x2 + 4) + Barctan (%) + ¢ where ¢ is

an arbitrary constant and 4 and B are constants to be found. (4 marks)

fix) = 4x -1

T J6=5x2

Show that [fixydx = PV6 — 5x2 + Qarcsin (y% ‘x) + ¢ where ¢ is an arbitrary constant

and P and Q are constants to be found. (4 marks)
_ XHS
= 16

a Find [fix)dx, giving your answer in the form A In(x? + 16) + Barctan (l) + ¢ where ¢ is

4
an arbitrary constant and 4 and B are constants to be found. (4 marks)
b Hence show that the mean value of fix) over the interval [0, 4] is% (%an + ?—g ) (3 marks)
¢ Hence write down the mean value of —4f(x) over the interval [0, 4]. (1 mark)
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® 13 Use the substitution x = %tan 6 to find f :’f: dx.
’ 9x*+ 4

a2
® 14 By using the substitution x = %sin @, show that J:\/li——4r2 dy= ﬁ(Z?r - 3V3).

Challenge

Given that x = 1, use the substitution x = secf to
find:

a f;dx b f""‘zx‘ldx

xyxz—1

@ Integrating using partial fractions

In your A level course you used partial fractions to integrate some rational functions.

Prove that
LBV S Be careful not to confuse this result
1 1. |la+x
——dx =552 + - 1 4.1 %
fa——x2 Y=g la—x7°¢ Wlthfa2+xzdx—aarctan o A

where a is a real constant.

L 1 n Factorise the denominator in order to integrate
a?-x2"7" Jwa+xa-x using partial fractions. ¢ Pure Year 2, Section 11.7
SR POE R
@+ xja—-—x) a+x a-—x
O s R Split into partial fractions and calculate the
i e L values of A and B in terms of a.
' 2a
x=a=B=-r
' 2a )
W 1 - 1_ d 1 ) 1— T )
jug = ‘\~2-d"\ = EQJR_‘F_TGH -+ Eafm dx
= élci Inla + x| — gﬁ'” |a = x| + ¢ ——— Integrate using the reverse chain rule.
gy | By Simplify using the law of logarith
= ﬁ Nag—x| t¢ implty using the law or logarithms.
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If the denominator of a partial fraction includes a quadratic factor of the form (x° + ¢), ¢ > 0, you
cannot write it as a product of linear factors with real coefficients.

However, you can still write it in partial fractions, where the partial fraction corresponding to the
quadratic factor has a linear numerator and quadratic denominator.

20 _ A +Bx+C
(x+3)(x2+1) x+3 x2+1

20=A(*+1) + (Bx + C){x + 3)

So

Setx=-3:20=10A=>A=2

A+B=0=B=-2

3B+C=0=C=6

o 20 _ 2 . B-2x
(x+3)(x2+1) x+3 x2+1

Find the values of 4, B and C by multiplying
both sides by (x + 3)(x% + 1).

Setx=-3sothat (Bx+ C)(x+3)=0
Equate coefficients of x2 on each side.

Equate coefficients of x on each side.

You can use the techniques from the previous section to integrate the second fraction on the right-

hand side.

Show that f 1+ x dx:Aln(
x4 9x

x2+9

1+#x dx‘:f 14X e ﬂ+B.\‘+C
x349x xix24+9) X XxZ49

Ax2+9) + Bx24+ Cx=x+1
Equate x? terms: 4 + B=0

Equate x terms: C =1

Equate constant terms: 94 =1= A = é B=-

|
Y (L —5-“'1) _
x3 4 9x o _f 9.\;+ xZ2+9 ax

ﬂ*i‘“g o
9x 9xZ+9))

1 p1 v
=i [l — dx+
9;1 f ‘!_'1'2'!'9
i dmeed g
= 9|m - > i 3ar"ctar1(
Y (TR . X
= Ez‘lrm. ,lf)lm,\ + 92 + Sarctan
_ 1y i Tl iz, 3L X ,
= 1512|n.\ Inlx2 + 9)) + Sarctan(B) + ¢
1 x2 1
15|n( 9)+Sarctan(3)+(’

70

) + Barctan(;) + ¢, where 4 and B are constants to be found.

Separate into partial fractions to
facilitate integration.

Calculate the values of the coefficients
by equating like terms.

Separate into 3 fractions and integrate
each separately.

T Calculate the second integral using the
. reverse chain rule.

Calculate the third integral using
G T x ithid =
faz+xad)._aarctan(a)+cW|tha_3.

Simplify using the laws of logarithms.
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SET G @

4 4

X
a Express —;

———————— as partial fractions.
x4+ 5x2+6 p

4 .
b Hence find J‘L X.
x4+ 5x2+6

a x*+5x2 +6 = (2 + 2)x?2 + 3) Start by factorising the denominator. Since
L X%+ 5x° + 6 does not contain an x? term or an
S5 x4+ x i e Bx +C » Dx + E | X term, you can write it as u + 5u + 6 where
(X% + 2)(x% + 3) x°+2 x%2+3 | =

Xt +x= AKXF + 2)(x% + 3)
+ (Bx + O)x® + 3) + (Dx + E)(x2 + 2)

The numerator and denominator both have
degree 4, so this is an improper fraction.
You will need a constant term, and terms with

A=1 denominators x2 + 2 and a2 + 3.
B+D=0 —‘ — Equate coefficients of x4
2B+ 2D =1 J

— Equate coefficients of x* and x.

So B=1and D= -1
Equate coefficients of x? and constant terms,

SA+C+E=0 _‘ TanduseA:l.

6A+3C+ 2E= OJ | Problem-solving

There are other ways of determining the

SoC=4and E=-9 coefficients. You could find 4 = 1 by writing
xe4x  (x*+5x7+6) - (5x%—x +6)
o R . XA x4 D X +5x246 X4+ 5x2+6
X" +5x2+6 X2+2 x%2+3
_ 5xt—x+6
X4+ 5x2 46

Methods such as this are often quicker than
using polynomial long division. You could also
substitute x =iy2 and x = iy/3 to eliminate
terms.
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b Using the partial fraction decomposition:

xt+x -

For fo o — dx + dx

f(.\'e +2x2+3) f1 ! f.xg +2
Split the integral up into different parts that

4 X v 8 - o : .
+ J dx — f - dx — J . dx can be integrated using inverse trigonometric
X242 XZ+ 3 X2+ 3 . .
functions or the reverse chain rule.

X + T;_—Irﬂ.\‘ﬂ + 2| + :.iarctaﬂ(;i)
4 v P
Use f PO e o]+ e and

f(x)

1 sl BN
fxz +a2d.x = aarctan(a) +¢.

1 9 X
- —In|x2 + 3| = =arctan )+c
s V3 (v‘

\+ll
2

\~+2
x2

+2V2 arctan("%)

- 3v3 arctan(%) + Simplify.
¥ /

1 Express the following as partial fractions.
. 1 b 1 & 4
(x2+ Dix + 3) (x2 4+ 2)x=1) x(x2+7)
2 - "
2 Find f——x———L dx, giving your answer in the form A4 In|x + 2| + Barctan (L_) +c,
(X2 + 6)x +2) V6

where 4 and B are constants to be found, and ¢ is an arbitrary constant. (4 marks)

3 fi)=xt-x3-4x2-2x-12
a Given that (x + 2) 1s a factor of f(x), fully factorise f(x). (2 marks)

x3 =202 +4x-24
xXt=x3—-4x?-2x-12

b Hence find f dx, giving your answer in the form

-‘x_ + 2- .-'I
In ——— + Darctan
x— 3-8 (

and c¢ is an arbitary constant. (5 marks)

2) + ¢, where A4, B and D are constants to be found,
¥

2

d\. giving your answer in the form A4 In (). d ) + Barctan (%) + 2,

@& 4 Find [ 2= x

where 4 and B are constants to be found, and ¢ is an arbitary constant. (5 marks)

5 Find f 4“‘—"'1d x, giving your answer in the form % + Barctan (23 ) + ¢, where A4
and B are constants to be found, and ¢ is an arbitary constant. (5 marks)

T2
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+3 -2 " c—1/4
6 Show that f" £ 93; +IA +1 dx= lnﬁ + Darctan x + ¢, where A, Band D are
X7 - B

constants to be found, and ¢ is an arbitary constant. (5 marks)

7 fix)y=x3-4x2+6x-24

a Given that f(4) = 0, fully factorise f(x). (2 marks)

2x2-3x+ 24
x3—4x246x-24

¢ Use your answer to part b and an appropriate substitution to calculate
2x2 - 3x+24

b Express in partial fractions. (2 marks)

dux. (4 marks)
x3—dx2+6x-24

8 fly=——st——

(x=-202x-1)
a Calculate [fix)dx. (3 marks)

2 1 ;
b Hence show that f% = 0% =1 dx diverges. (3 marks)
-4 -2 "
9 a Express :4 .:-15(; ,:112;; 38 partial fractions. (4 marks)
-4 2 "
b Hence find [X X"+ 2% 4, (5 marks)
x4+ 10x2 + 24
a2 "
@ 10 Use the method of partial fractions to find f %dx, x> 0. (4 marks)
EP) 11 Show that [ 1)%-\'2 ¥ = 4(r +21n2) (4 marks)
-4

12 a Express ﬁ as partial fractions. (4 marks)

o
b Hence find [—*- "1 dyx. (5 marks)

x(x?+2)?

Challenge Problem-solving

Find: First complete the square in the denominator
and then use an appropriate substitution.

1 1
S S b f—d
2 fx3—8x+8 & SNt Al

7
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® 1 a Using the substitution u = e*, find f o -d.x. (3 marks)

b Hence show that f oy e" dx = 5 (3 marks)

2 = 1 —cosx
® 2 Find the exact mean value of fix) = e over the interval [E o (4 marks)
® 3 Show that the exact mean value of fix) = xsin 2x over the interval [0 2] 155 (4 marks)
@ 4 a Find the derivative of arccosx?. (3 marks)
. i A

b Hence, or otherwise, calculate | ﬁdx. (1 mark)

5 fix= arctan(zx%lé)
1
how that f'(x)= ————= 4 k
a Show that f'(x) s (4 marks)
b Given that -2 < x = 2, show that |{"(x)| = 1 (2 marks)

® 6 a Explain what it means for an integral to be improper.

b Identify two features of f h—dx which make it an improper integral.

Dvx

-dx is convergent and find

1
¢ By differentiating arctanx, or otherwise, show that f Gt Dix

its exact value.

Find [fix)dx, giving your answer in the form 41 - 5x2 + Barcsin (V5 x) + ¢ where ¢
1s an arbitrary constant and 4 and B are constants to be found. (4 marks)

® 8a Showthatfu{h_zi_l

b Hence evaluate:

dx = arctant. (2 marks)

"B Ll ]
i fu 41 dx (2 marks)
w =1 )
ii Imxz 1 dx (2 marks)

Th
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o 142x
=132

a Find [fix)dx, giving your answer in the form AIn(1 + 4x? + Barctan 2x) + ¢

where ¢ is an arbitrary constant and 4 and B are constants to be found. (4 marks)
0.5
b Hence find the exact value of fﬂ fix) dx (3 marks)
@ 10 a Show that j# dx = Parcsin Qx + ¢ where ¢ is an arbitrary constant and P and Q are
va —HdX~
constants to be found. (4 marks)
b Hence show that _[ ———dx=< (3 marks)
V4 - 9x? 6
o . 1y (47 - 73)
® 11 Use the substitution x = sin f to show that [ : E _dx=r
0 V1 -x? 64
= 4
(E/P) 12 fix)= T4 8
1
a Use the substitution u = x? to calculate L flx)dx. (4 marks)
b Hence show that L fix)dx converges and state its value. (3 marks)

2x3—2x2+ 18x+9 , g _B x\ .,
(E/P) 13 Show that | = dx=Alnlx| -+ D arctan(3) + ¢, where 4, Band D are
constants to be found. (5 marks)
x?-3x+ 14

(E/P) 14 fix) =

x3=4x2+2x -8

a Express f(x) in the form , where P and Q are constants to be found. (3 marks)

x—4+x2+2

b Find [f(x)dx, giving your answer in the form Aln|x — 4| + Barctan (%) + ¢ where
!

A and B are constants to be found. (4 marks)
¢ Hence show that L fix) dx diverges. (2 marks)
15 fiy=—
XY+ x

a Find [fix)dx. (4 marks)
b Hence show that the mean value of f(x) over the interval [1, 2] is ln% (2 marks)

¢ Hence, or otherwise, find the mean value, over the interval [1, 2], of 2f(x) - %
— (3 marks)
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Challenge

A function is said to attain its mean value on the interval [a, b] if there

b
exists a value ¢ € [g, b] such that f(¢) = ﬁf f(x) dx.

a Show that the function f(x) = x* — 2x + 4 attains its mean value on
the interval [0, 2], and find the exact values of ¢ € [0, 2] for which

2
flo =1 [ ftodx

b Give an example of a function which does not attain its mean value
on the interval [0, 2], fully justifying your answer.

Summary of key points

h
1 The integrall f(x) dx is improper if either:
+ one or both of the limits is infinite

+ f(x) is undefined at x = @, x = b or another point in the interval [, b].

2 The mean value of the function f(x) over the interval [«, b], is given by

1 ('t d
b—aj; (xhex

3 If the function f(x) has mean value f over the interval [, b], and k is a real constant, then:

« f(x) + k has mean value f + k over the interval [a, 5]
« kf(x) has mean value kf over the interval [a, #]

. —f(x) has mean value —f over the interval [g, b].

L - d (arcsinx) =

dx 1-x2
d 1
ris (arccos x) = —
d

. a(arctanx} = T 02

5 . dx:larctan(£)+c,a>{}, x| < a
a®+ x? a a

1 T
¢+ | ——dx =arcsin (—) +c
f”'az_xz {
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Volumes of revolution

After completing this chapter you should be able to:
e Find volumes of revolution around the x-axis - pages 78-80
e Find volumes of revolution around the y-axis - pages 81-83

® Find volumes of revolution for curves defined
parametrically -» pages 83-87

® Model real-life applications of volumes of revolution
- pages 87-89

-t il

Prior knowledge check

1 Evaluate:
a foZ(Sx:‘ - 6)2dx
0

b f 2cos®x dx
s

2
C f x2e-%dx ¢ Pure Year 2, Chapter 11
0

2 Find the area of the region bounded
by the curve y = %sec"x, the x-axis, the
y-axis and the line x = 1. —

« Pure Year 2, Chapter 11 1.

3 Theregion R is bounded by the curve
y=4x?%+ 5, the x-axis and the lines
x =2 and x = 4. The region is rotated
through 27 radians about the x-axis.
Find the volume of the object generated.
« Book 1, Chapter 5

Volumes of revolution can be used to
model objects with circular cross-sections.
By defining curves parametrically, you can
find volumes of a wider range of objects.

— Exercise 4D Q4



Chapter 4

@ Volumes of revolution around the x-axis

You need to be able to find volumes of revolution
of more complicated curves. In this chapter you
might need to use any of the functions and
integration techniques you encountered in your
A level course.

@ You have already encountered volumes of
revolution with simpler functions.
« Book 1, Section 5.1

= The volume of revolution formed when y = f(x) is rotated through 27 radians about the
x-axis between x = ¢ and x = b is given by

T ﬂ_f.ﬁy; dx @ Explore volumes of revolution O
a around the x-axis using GeoGebra.
Example o

The region R is bounded by the curve with equation y = sin2x, the x-axis and the lines x = 0 and
x= % Find the volume of the solid formed when region R is rotated through 27 radians about

the x-axis.

V=) “Sin?2x dx Use V=?rj:y3dx witha =0, bsgand yZ=sin?2x.

]

I

: :,'3(1 - cos4x)dx

1l
3 A
nal—= C“‘?I

L Use cos24 = 1 - 2sin?4
Rearrange to give sin‘d = ...
O] Note that 2 x 2x gives 4x in the cos term.

1 i
— ®S5in 4.\}3

—— Multiply out and integrate.

o

. .

4
=
4

Exercise @

1 Find the exact volume of the solid generated when each curve is rotated through 27 radians
about the x-axis between the given limits.

| 4sinx
between x =0 and x =2 by= VT % comn between x =0 and x =

i
1 + cosx 2
[ Sr
V10

-
between x=1and x =2 f y=cosec x + cot x between x = 3 and x =

3 y=.x+l

— "r
¢ y=vxsecx between x=0and x = il- d y= bctween x=0and x=

."—
Vinx
%

[ J.‘:

0|3

¥ . o W
2 The curve with equation y = cosxvsin2x, -1

T . . .
0 = x = 7 is shown in the diagram.

¥ =cosxvsinlx

The finite region enclosed by the curve and the
x-axis is shaded. The region is rotated about
the x-axis to form a solid of revolution.

Find the volume of the solid generated. (6 marks) ol

=Y

M|=1.
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Volumes of revolution

3 The diagram shows the finite region R, which is bounded 7
by the curve y = In x, the line x = 3 and the x-axis.

The region R is rotated through 27 radians about the
x-axis. Use integration to find the exact volume of the
solid generated. (7 marks)

Problem-solving

You will need to find the value of a, 0
where the curve crosses the x-axis
4 a Using the substitution x = 3sin#, or otherwise, find
the exact value of
¥ 1
X 7 marks
J;; $5IG _ o2 ( )
The diagram shows a sketch of part of the curve with Va
equation y = —————
x(9 - x2)i
The shaded region R, shown in the diagram, is bounded
by the curve, the x-axis and the lines with equations .
D il o S Tt lin e TGO A d = -
x =3 and x = =~ The shaded region R is rotate 0 T %
through 27 radians about the x-axis to form a solid of - 2
revolution.
b Using your answer to part a, find the exact volume of
the solid of revolution formed. (2 marks)
; ; 4x + 3 ; ; Y
5 The curve with equation y? = = ’)x {-; I 1s shown in e Aot 3
the diagram. BHRLN =T T (x+2)(2x-1)
The shaded region R, bounded by the lines x = 1, x =4,
the x-axis and the curve, is rotated 360° about
the x-axis.
Use calculus to find the exact volume of the 0 1 ' 4 ‘3
solid generated. (6 marks)
v
6 The curve shown in the diagram has equation
2y* = xsinx + x. 292 = ysin x + x
a Show that the coordinates of point A4 are "
o B
(70) (1 mark) o : >

The shaded region R is rotated about the x-axis to
generate a solid of revolution.

b Find the volume of the solid generated. (5 marks)
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7 The curve with equation y = ﬁﬂ} is shown in the diagram. Y

The region R bounded by the curve, the x-axis and the lines \ 10
x = -1, x = 2 is shown in the diagram. e VYT 3500y
The region is rotated through 360° about the x-axis. . \R\\J

a Find the exact volume of the solid generated. ~1
(6 marks)

10

3(5 + 2x)

and the lines x = -1 and x = 2,

Q
12

The region S, bounded by the curves y = d

.
T35+ 2x)

is shown in the diagram. The region is rotated through
360° about the x-axis.

¥

20
T 3(5 4 2x)

b Find the exact volume of the solid generated.

(3 marks) s ‘.
. 5 35+ 2x) N
_II 0 ‘-IZ X

8 The region R is bounded by the curve with equation Va
y = xe~* and the line with equation y = %x, as shown
in the diagram.

The region is rotated through 27 radians about
the x-axis.

Find the volume of the solid of revolution formed.
Give your answer correct to 3 significant figures.

(8 marks)
Challenge

The diagram shows the region R, which is bounded by the curve with

equation y = sinx, 0 < x < 7 and the line with equation y = L

V2
YA
i —-1-'--
/‘E\ J vrj-
y= sin\
0 N
Region R is rotated through 27 radians about the line y = J%

Show that the solid of revolution formed has area %(Tr -3)
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Volumes of revolution

@ Volumes of revolution around the y-axis

You can apply A level integration techniques to volumes of revolution formed when a curve is rotated
about the y-axis.
® The volume of revolution formed when m When you use this formula you are

x = f(y) is rotated through 2 radians about integrating with respect to y. You might need to

: i rearrange functions to get an expression for x%in
the y-axis between y=aand y = bis given b
’ L ¥ g y terms of y. « Book 1, Section 5.2

@ Explore volumes of revolution O

around the y-axis using GeoGebra.

Volume = wf "x2dy

The diagram shows the curve with equation y =4Inx - 1.

The finite region R, shown in the diagram, is bounded by the
curve, the x-axis, the y-axis and the line y = 4. Region R is
rotated by 27 radians about the y-axis. Use integration to show
that the exact value of the volume of the solid generated is

2m/e(e? - 1).
y=4inx -1
¥+ 1 =
Inx = ) First rewrite x as a function of y.
X = 8_.7- = eiei —

\ 2

V=n J(') leves) dy = me? J;;l&f‘ dy i

Use V= frfh.xzdy witha=0,h=4and x =eiei.
(4]

[ Integrate with respect to y.

mwele? -1 Simplify and leave in the correct form.

Exercise @

1 Find the exact volume of the solid generated when each curve is rotated through 27 radians
about the y-axis between the given limits.

a x=e¢”-—ebetween y=0and y =1 b x=/ye’ between y=0and y =1
VS—Iny 1 t
¢ x=——F—betweeny=1and y=5 d x= between y =e*and y = ¢’

) ~yIny

2 Find the exact volume of the solid generated when each curve is rotated through 27 radians
about the y-axis between the given limits.

ay= % — 1 between y=0and y =1 b y= 5‘; 2";" between y=-1and y =1
¢ y=2e" between y=2and y=4 d y=arccos /x between y=0and y = -;}
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3 The diagram shows the curve with equation x =

2y +1
The finite region bounded by the curve, the y-axis and the lines
y=1and y = bis shown in the diagram. The region is rotated

through 27 radians about the y-axis to generate a solid of

revolution. Given that the volume of the solid generated is 1—%
find the value of b (5 marks) @ o

4 The curve with equation x = /y siny is shown in the diagram.

5 The diagram shows the curve with equation y = 3In(x - 1). Va

VA

b ~_ X =ysiny

0 X

The finite region enclosed by the curve and the y-axis is shaded. The region is rotated through
27 radians about the y-axis.

a Find the value of h. (1 mark)

b Find the volume of the solid generated. (6 marks)

The finite region R, shown shaded in the diagram, is

bounded by the curve, the x-axis, the y-axis and the line
¥ = 5. The region R is rotated by 27 radians about the R
y-axis. Use integration to find the exact value of the
volume of the solid generated. (5 marks)

LELLUEIN® First rearrange the equation to make 0 /

/v =3In(x-1)

X
x the subject.
6 a Express cos y + v3siny in the form Rcos(y — @), where R > 0 and « is acute. (4 marks)
. . . " | y
The region R is bounded by the curve with equation x = =, the y-axis and the
_ s Cosy + v3siny
linesy=0and y = 3
b Using your answer to part a, or otherwise, show that the volume of the solid formed when
the region R is rotated through 27 radians about the y-axis is EL:‘*% (6 marks)
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Volumes of revolution

7 a Using the substitution « = 27, or otherwise. find the exact value of

1 2y
—dy

L 2+ 12 (6 marks)

The diagram shows part of the curve with equation x = 2;_ 7 ry e VT
T w4l

The shaded region R, shown in the diagram, is bounded by the N
curve, the y-axis and the lines y = 0 and y = 1. The region is R
rotated through 27 radians about the y-axis to form a solid 0 X

of revolution.

b Using your answer to part a, find the exact volume of solid of revolution formed. (2 marks)

8 a By writing a suitable expansion for sin 50, or otherwise, show that

sin-“ﬂz,—iﬁ(lﬁsin.‘)— 5sin360 + sin36) (3 marks)

— YA

The curve shown in the diagram has equation x = sin’y/siny.

The finite region bounded by the curve, the y-axis and the line

- L
ry=y
The region is rotated through 27 radians about the y-axis to
generate a solid of revolution.

x=sinyvsiny

is shown in the diagram.

— i . -
ln’ — -
b Show that the volume of the solid generated is I (3 i 43y 2) 4

I3

m Volumes of revolution of parametrically defined curves

When the equations of curves are given
parametrically, you can adjust the formulae for
volumes of revolution by using the chain rule.

m For a parametric curve, x and y are each
given as a function of a parameter, 1.

& Pure Year 2, Chapter 8

m The volume of revolution formed when the
parametric curve with equations x = f(r) m After you have used the chain rule,

and y = g(r) is rotated through 27 radians you are integrating with respect to the parameter,
about the x-axis between x =azand x=bis t. Generally if x = a, then ¢ # a. You can evaluate
given by the definite integral by rewriting the limits of the
. if:p dx . . )
o ﬂ_fx bigee “’J yz'adf integral in terms of
x=a

t=q
m The volume of revolution formed by rotating the same curve through 27 radians about the
y-axis between y = a and y = b is given by

" =p o0y
Volume:wfj‘szdy=frf x? 5 dr
= v
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; ; 1
The curve C has parametric equations x = (1 + 1), y = T+7

{ = 0. The region R is bounded by C, the x-axis and the lines
x =0 and x = 2. Find the exact volume of the solid formed

[

[

when R is rotated 27 radians about the x-axis. 0 X
1 .1 y . d
et — i Tl . s —
Y ) WE J Find y*and 5
dx
X = =
X=t+1c=> oy + 2t

Find the limits in terms of «. You can ignore the
=i v =1 r second solution to each quadratic equation as

=2 re the domain of 1 is given as 1 = 0.
, A / \
l/—ﬂfo‘””z'“gmr Use V=nj"y2fj-—xd:withp=o,q=1,
feer... A4 . B - 0 d’x
(M+02 +02 1+t y-’-:mandazlwz
1+2r=A+B('|+r)T
:>B=23ﬂd.4=—1l_|

-— Use partial fractions.

_f( 2 __1 ]
S0 V—rro T 1 (1_‘_”2@1!

1 1 Substitute values of 1 or compare coefficients.
= :rr[21n|1 + 1 +-—]
1+,

m{(2In2 + 3) = (0 + 1))
m2h2 - 3)

Exercise @

1 The curve C'is given by the parametric equations x = *, y = 1%, t € R. The region R bounded
by the curve, the coordinate axes and the line x = 8 is rotated through 360° about the x-axis.
Find the volume of the solid of revolution formed.

2 The curve Cis defined by parametric equations x =¢/, y=yt=1,1= 1.
The finite region bounded by the curve, the
x-axis and the lines x = e’ and x = ¢’ is
rotated through 27 radians about the x-axis. m Your answers to parts b and d should be

a Write down the values of 7 corresponding the same. You can find a volume of revolution for
tox=e2and x =3 a parametric curve by either integrating with

. ; ; . dx
b Find the volume of the solid of revolution respect to the parameter using = fyz adﬁ or
formed. by converting to Cartesian form and then using
¢ Show that a Cartesian equation of 7 [ y2dx. If you convert to Cartesian form,
Cisy’ =Inx - 1. you must remember to convert the limits of

d Toviluate f:”'lllnx = D, integration to values of x.
2

(=¥ A



Volumes of revolution

3 The curve C is defined by the parametric equations x = v'1 — sinf, y = cosf, 0 < § < 2.

Va

a Show that a Cartesian equation of the curve is y?= 2x? — x*.
b Find the coordinates of the point P, where the curve intersects the x-axis.
The finite region bounded by the curve is rotated about the x-axis to form a solid of revolution.

¢ Find the volume of the solid formed.

S

5

The region R bounded by the curve, the y-axis and the lines y = 1 and y = 8 is rotated through
27 radians about the y-axis.

4 The curve Cis given by the parametric equations x = tan#f, y = sec’f, 0 < 0 <

a Find the values of @ corresponding to y =1 and y = 8.
b Find the volume of the solid of revolution formed.
¢ Show that a Cartesian equation of the curve is x? = y3 — 1.

d Usern f "2 dy to verify your answer to part b. -
a L

® 5 The curve C has parametric equations x = sin“*f/cosfl, y = cosf, 0 < 0 < g C
The finite region R bounded by the curve and the y-axis is rotated through )
360° about the y-axis. 0 X

Find the volume of the solid of revolution formed.

® 6 The diagram shows the curve C with parametric equations x = 2¢, y = 2, =2 < { < 2. The points
P and Q correspond to the points where ¢ = -2 and 2 respectively.

The region R is bounded by the curve and the line y = a. Region R is rotated about the y-axis
to form a solid of revolution.

Use parametric integration to show that the volume of the solid formed is 327.

Q0



Chapter 4

7 a Find [cos?0d6 (2 marks)

The diagram shows part of the curve C with parametric
equations x = cotf, y=4sin20,0 = 0 < g The finite region

R shown in the diagram is bounded by C, the lines x = —%
v

x =3 and the x-axis. Region R is rotated through 27
radians about the x-axis to form a solid of revolution.

LY

b Show that the volume of the solid of revolution formed
is given by the integral kf *cos26 d@, where a, b and k are
constants to be found. (5 marks)

¢ Hence find the exact value for this volume, giving your answer in the form pr?,
where p is a constant to be found. (3 marks)

. . 1
8 The curve C has parametric equations x = =In2tt=

207
The finite region R, shown in the diagram, is bounded by C,
the x-axis, the y-axis and the line y = ¢. Region R is rotated
through 27 radians about the y-axis.

1o | —

The solid of revolution formed has volume 2;—9#

Find the exact value of «. (8 marks) 0

=Y

9 The curve C has parametric equations x = 2sint, y=£2,0<t=<m Va

The finite region R, shown in the diagram, is bounded by C and
the y-axis. The shaded region is rotated through 27 radians
about the y-axis. Use calculus to find the exact volume of the
solid generated. (6 marks)

o g

10 The diagram shows the curve C with parametric equations x=> - 2¢, y=1-£, -1 st =< 1.

C intersects the coordinate axes at points P, Q and § as shown in the diagram.

The region R is bounded by the curve and the line segments PQ and OS.

Region R is rotated through 27 radians about the x-axis.

Find the exact volume of the solid of revolution. (8 marks)

Qs



Volumes of revolution

11 The diagram shows part of the curve C with parametric YA
equations x=¢’, y=¢e 2, t € R. 6
The region R is bounded by the curve, the y-axis and the lines
y=1and y = 6. Region R is rotated through 2 radians
about the y-axis.

a Use parametric integration to find the volume of the solid
of revolution. (6 marks)

The tangent to the curve at the point (1, 1) is shown on the
diagram. The region S is bounded by this tangent, the curve,
the y-axis and the line y = 6.

b Find the volume of the solid of revolution formed when the
region S is rotated through 27 radians about the y-axis.
(3 marks)

Modelling with volumes of revolution

Volumes of revolution can be used to model real-life situations.

The diagram shows a model of a goldfish bowl. The cross- Y4
section of the model is described by the curve with / \
parametric equations x = 2sint, y = 2cosf + 2,% st %_,
where the units of x and y are in cm. The goldfish bowl is 3cm
formed by rotating this curve about the y-axis to form a solid

of revolution.

a Find the volume of water required to fill the model to a 4om
height of 3cm.

The real goldfish bowl has a maximum diameter of 48cm.
b Find the volume of water required to fill the real goldfish bowl to the corresponding height.

Q7
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: dy
a X =2sint = X% =4sin?t Find x* and dr
dy
y=2cost+ 2 = — =-2sint
) dt | Find the limits in terms of ¢.
yom= 0 = Pepst 4 2leiQimf moar
ji=iB =% Drbel s 2 =81l Sm The two possible values of 1 when
' _ 3 3 y =3 correspond to the two sides of the bowl.
V= ’?TL[ "4 sin®t(—2sint) dt Choose one of these, as you need to rotate half of
5 f_ 504 the bowl about the y-axis.
=-8m| ‘sin“tdt
| —
= —'15'?'([ : 5lll"lf{T - 5052 f)f)‘f USE V: ‘ﬂ'f X’Zd—:’vd{WithP: T, q: 53?1.,
" P
= —5?rj;"".’5'|r1r - sintcos?t) dt y2=4sin2tand d_);_ = —?sint
= -8n|-cosl + %coeﬁr :
, 5r 1 T 5x Using the identity sin?t + cos?t = 1 allows you to
- 1 ~ .
= —S?T((—cc&? + gz cos” -3—] integrate sin’t.
- (—cos:r + ; cos? ﬁ))

—— Integrate sinzcos® using the reverse chain rule.

= -5’”((—% t %(35)) - (T - %)) —— Substitute the limits.
2
= -&r{-3) = or L Simplify.

b Llinear scale factor = 12
Volume scale factor = 1223 = 1728
Volume in actual tank = 1728 x 9n
= 48200cm? (3 s.f)

Va
Exercise @ 100 b

1 The diagram shows the curve with equation x = 2200?_[;. y > 0.

A volcano 1s modelled as the solid of revolution formed

when the region R bounded by the x-axis, the y-axis, the
line y = 120 and the curve is rotated about the y-axis.

The units of x and y are metres. 0 X
a Write down the diameter of the base of the volcano according to this model. (2 marks)
b Use this model to estimate the volume of the volcano. (6 marks)

2 The diagram shows the cross-section of a vase, which has a height of 30cm.

100y
The vase is formed by rotating the curve C with equation x° = W
0 =y = 30 through 360° about the y-axis. The vase is filled to a height of 20cm
with water. Find the exact volume of water in the vase in the form pzlngcm?,

where p and ¢ are integers to be found. (6 marks)

20



Volumes of revolution

3 a Prove that cos’f = %cosﬁ + %cos 30 (3 marks)

The diagram shows the cross-section of a domed tent.

The tent can be modelled by a solid of revolution of a

curve C about the y-axis. Curve C has parametric i
equations x = 50cosf, y=30sinf, 0 = f < % I
- 100m >

b Find the volume of the tent. (5 marks)

4 A scale model of a hot-air balloon is modelled as a solid of
revolution of a curve C about the y-axis. Curve C has

. . i ™ a .
equation x =sinyy/sin2y, 0 =y = B where the units of x
and y are in metres.

a Find the volume of the model hot-air balloon. (5 marks)

b The real hot-air balloon has a height of 67 metres. Find the volume of this balloon. (2 marks)

Vg
5 The diagram shows the image of a silver earring, which has a height 2
of 3mm. The earring is modelled by a solid of revolution of a curve C
about the y-axis. Curve C has parametric equations x = 2sin 20,
y=3sinf,0==0=<m.
0 "
a Show that a Cartesian equation of the curve Cis x2 = glﬁ y39 - »? (4 marks)

Silver is melted down and cast into a mould to create each earring.
b Using the model, estimate the maximum number of earrings that can be manufactured from
300mm? of silver. (6 marks)

¢ Give one reason why this might be:
i an underestimate
ii an overestimate. (2 marks)

Mixed exercise o

1 a Find f xcos2xdux. (5 marks)

b The diagram shows part of the curve C with
equation y = 2x3sin.x. The shaded region in
the diagram is bounded by the curve, the x-axis

0

and the line with equation x = g This shaded

region is rotated through 27 radians about the

x-axis to form a solid of revolution. Using

calculus, find the volume of the solid of 0
revolution formed, giving your answer in

terms of . (4 marks)

3

N

Q0



Chapter 4

® 2 a Use integration by parts to show that YA

The finite region R, bounded by the curve

: ; . s
with equation y = xzsecx, the line x = 1 and

t
t

f xsec?xdx = 7= 3In2 usarks)
A 2

he x-axis is shown. Region R is rotated

|
y=xisecx

hrough 27 radians about the x-axis. 0

b Find the volume of the solid of revolution

generated. (2 marks)
+2

3 The diagram shows part of the curve C with equation y = * x> 0.

Y c

0

2

R
=Y

The tangent 7"to C at the point (1, 3) meets the x-axis at the point (% 0). The shaded region is
bounded by C, the line x = 3 and 7, as shown in the diagram.

The region is rotated by 27 radians about the x-axis to generate a solid of revolution.

Find the exact volume of thjis solid.

(10 marks)

4 The shaded region R, shown in the diagram, is bounded by the curves y = sec.x — cos x and
y = cosecx — sin.x, and by the x-axis. The shaded region R is rotated through 27 radians about
the x-axis to form a solid of revolution.

an

L

V= 8EC X — COS X f
~ \ y=cosec X —sinx

[

2|2

Find the exact volume of the solid.

The diagram shows part of the curve x = ¢»' — 2

The region R is bounded by the curve, the y-axis and the lines y =

2 and y =4, as shown in the diagram. Region R is rotated through
27 radians about the y-axis. Use integration to find the exact value
of the volume of the solid formed. Leave your answer in the form
m(Ae* + Be? + Ce? + De + F). (6 marks)

(9 marks)

Va
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Volumes of revolution

The diagram shows the region R that is bounded by the curve C and Ip

the line /.

Curve C has parametric equations x = 2sin’t, y =2 cost,0 = 1 < g

Line / 1s the tangent to the curve C at the point P(% 1). N
a Find the Cartesian equation of the line /.

The region R is rotated through 27 radians about the y-axis.

-y

b Find the volume of solid generated. 0

This graph shows, for 0 = ¢ = 2, the curve C with parametric equations
x=(+12y =%t3 + 3.

0 o5 ¥

The shaded region R is bounded by curve C and the lines x = 1 and x = 9.

a Find the area of the region R. (3 marks)
The region R is rotated by 27 radians about the x-axis.

b Use integration to find the exact value of the volume of the solid formed. (5 marks)

A point on the unit circle has coordinates (cost, sint). Use parametric integration to show that

the volume of the unit sphere is 4%

a Prove the identity sin*f) = %sim‘) - %siné’n‘). (3 marks)

The diagram shows a rugby ball, which has a length of 30cm

and a height of 20cm. ©
The curve C has parametric equations x = 15cosf, y = 10sinf, 0 = 0 =«

The rugby ball is modelled as the volume of revolution formed when the curve C is rotated by
27 radians about the x-axis.

b Find the exact volume of the rugby ball according to the model. (6 marks)

Vi

Part of the outline of a solid glass pendant is shown in the diagram.
The outline is modelled by the curve with parametric equations

x=2sin2t,y=4cost, 0 <t < % The piece of jewellery is

formed by rotating the shaded region through 27 radians about |
the y-axis. 0

Use the model to estimate the volume of glass contained in the pendant. (7 marks)

g1




Chapter 4

Challenge

The curve Cis defined by the parametric equations x = 1%, y =21, t € R,
The diagram shows the finite region R bounded by the curve C and the
line with equation y = x.

Ya

A solid of revolution is formed by rotating the region through 2 radians
327

52

about the line y = x. Show that the volume of this solid is

Summary of key points

1 The volume of revolution formed when y = f(x) is rotated through 27 radians about the x-axis
between x = a and x = b is given by
Volume = nfby‘dx

2 The volume of revolution formed when x = f(y) is rotated through 27 radians about the y-axis
between y =a and y = b is given by
Volume = '.'rfbx"'-dy

® The volume of revolution formed when the parametric curve with equations x = f(f) and
y = g(1) is rotated through 27 radians about the x-axis between x =« and x = b is given by

o - _d
Volume = r [ “y2dx = :rrf y? —d': dt
=a 1=¢

® The volume of revolution formed by rotating the same curve through 27 radians about the
y-axis between y = ¢ and y = b is given by

= dy
e [eapen e e
Volume ﬂ-JJ::ax dy ﬂ-r=q dr

qQ?



Review exercise

@ 1 Show that

cos2x +1sin2x
cos9x —1sinYx

can be expressed in the form
cosnx + isinnx, where n 1s an integer
to be found. (4)

« Section 1.2

a Use de Moivre’s theorem to show that
cos 50 = 16¢cos’ ) — 20cos*f + Scosd. (4)

b Hence find 3 distinct solutions of the
equation 16x° —20x* + 5x + 1 =0,
giving your answers to 3 decimal places
where appropriate. (5)

« Section 1.4

a Use de Moivre’s theorem to show that
sin50 = sinf(16cos*f — 12cos* A + 1)
(4)
b Hence, or otherwise, solve, for
0=0<m,sin50 +cosfsin260=0. (5)

« Section 1.4

a Use de Moivre’s theorem to show that
sin’f = T’g(sin 50 = 5sin 360 + 10sind). (4)

b Hence, or otherwise, show that

| sinsodo =% (6)
! « Section 1.4

a Given that z = cos@ + 1sin @, show that

"+ z7"=2cosnf. (2)
b Express cos®d in terms of cosines of
multiples of 0. 4)
¢ Hence show that
Sw
j; cosdf =37 (6)

« Section 1.4

6

The convergent infinite series C and S are
defined as

C=1+cosf+cos20+ ... +cos(n—1)0
S=sinf +sin20 +...sin(n=1)0
By considering C + 1S, show that

1 —cosfl + cos(n—1)0 - cosnb

2 —2cosf
and write down the corresponding
expression for S. (4)

« Section 1.5

a Solve the equation
=4+ 4
giving your answers in the form

z = re*", where r is the modulus of =
and k is a rational number such that

Osk=2. (6)
b Show on an Argand diagram the points
representing your solutions. (2)

« Section 1.6

a Solve the equation
=32+ 32/3i
giving your answers in the form re”,
where r > 0, - <0 = . (6)
b Show that your solutions satisfy the
equation
H4+2=0
for an integer k. the value of which

should be stated. 3)
« Section 1.6

Solve the equation z° = i, giving your
answers in the form cosf + isinf. (6)
€ Section 1.6, 1.7

g3



Review exercise 1

® 10

(E/P) 12

EP) 13

(E/P) 14

[« VA

a Find, in the form re”, the solutions to
the equation
z2-16-

161V3 =0 (5)

The solutions form the vertices of a
polygon in the Argand diagram.

b State the name of the polygon formed.

(1)

¢ Section 1.7

a Write down the five distinct solutions
to z° = 1, giving your answers in
exponential form, and show that their
sum is 0. 4)

b The point (3, 0) lies at one vertex of
a regular pentagon. Given that the
pentagon has its centre at the point
(2, 1), find the coordinates of the
other vertices.

“4)

« Section 1.8

Prove that
2 _ . n
;(?’4'1)(?'4'2)_—?14'2 ©)
« Section 2.1
Prove that
n ) n(an + b)

;(H D(r+3) " eln+2)n+3)
where a, b and ¢ are constants to be
found.

&)

« Section 2.1

a Show that
r+l_ £ |
r+2 r+1  (r+ Dr+2)

rezt
(2)

b Hence, or otherwise, find

I 1

,.; (r+ D(r+2)

as a single fraction in terms of n.  (3)
&« Section 2.1

, glving your answer

N 2
) = e+ D+ Dx +3)
a Express f(x) in partial fractions. (2)
b Hence find Z:f(r). 3)

« Section 2.1

@P) 16

@

(E/P) 18

® 19

E/P) 20

® 2

a Express as a simplified single fraction

1 1
TP @
b Hence prove, by the method of
differences, that
N 2r=1 I 1
L rir— n 3
+ Section 2.1
a Prove that
" 4 n(an + b)
Tr(r+2) (n+1)(n+2)
where ¢ and b are constants to be
found. (5)
100
b Find the value of ,Zm r(r - 2)
4 decimal places. (2)
+ Section 2.1
a Prove that
2 |
b3y vy ks Y )
b Hence find the exact value of
20 2
Zujl 4r: -1 (2)

+ Section 2.1

Given that for all real values of r,
2r+1P-Q2r-1=A4Ar*+ B

where 4 and B are constants,

a find the value of 4 and the value

of B. (2)
b Hence show that
S r=gn(n+ 1)(2n + 1) A3)
r=1
4{
¢ Calculate Z‘(3r - 1)~ 2)
r=1

« Section 2.1

Prove that
2 ] n(an + b)

A+ D)r+2) e+ DH2n+1)
where a, b and ¢ are constants to be
found.

(6)

+ Section 2.1

a Show that
r3—r+IEr_1+l_L
Hr+1) rorl

forr#0, -1. (2)



Review exercise 1

22

(E/P) 23

24

EP) 25

26

@ 27

. i+
b Find 2 L)

answer as a single fraction in its
simplest form.

, expressing your

3)

« Section 2.1

b 2r+3

Find; T+ 1) 3

4+ Section 2.1

Given that x is so small that terms in x*
and higher powers of x may be neglected,
show that

llsinx —6cosx+5=A4+ Bx+ Cx*

stating the values of the constants

A, Band C. (6)

+ Sections 2.3, 2.4

Show that for x > 1,
In(x>=-x+1)+In(x+1)=3lnx

(=1
- o e (6

X
« Sections 2.3, 2.4

1
-2:-3"'"""

Given that x is so small that terms in x*
and higher powers of x may be neglected,
find the values of the constants 4, B, C
and D for which

e?*cosSx =4 + Bx + Cx* + Dx? (6)
« Sections 2.3, 2.4

a Find the first four terms of the
expansion, in ascending powers of x,
of

Qx+3)", x| < 3 3)
b Hence, or otherwise, find the first four
non-zero terms of the expansion, in
ascending powers of x, of
sin2x

2x+ 3

%
|x] <3

S)

< Sections 2.3, 2.4

a By using the Maclaurin series for cos x
and In(1 + x), find the series expansion
for In(cos x) in ascending powers of x
up to and including the term in x*. (6)

(®) 28

® 29

® 30

® 31

® 34

b Hence, or otherwise, obtain the first
two non-zero terms in the series
expansion for In(sec x) in ascending
powers of x.

<« Sections 2.3,

Given that
f(x) =In(l + cos2x), 0<x< %
Show that:

a f'(x)=-2tanx
b £77(x) = ~(I"(x) /() = (£"(x)")
¢ Find the Maclaurin series expansion
of f(x), in ascending powers of x, up
to and including the term in x*,
<« Sections 2.2, 2.3,

an

Evaluate f e*sinxdx

¢ ¢ Section

YE
- dx
= x?

|
Evaluate f :

] v .
« Section

: 1 ]
a Find f,x(.v(-i-})dl

|
b Hence show that f
3

y Wx+ 3)
converges and find its value.
« Section

dx

Show that f x*e™ dx converges and
1

find its exact value.
« Section

a Find f;dx
(5 - 2x)?

3

b Hence show that ;, dx
; —(5 — 2x)?
diverges.

« Section

Find the exact mean value of -
f(xx) = xcos 2x over the interval [0. 5] y

« Section

4

2.4

2)
)

4

2.4

)

3.1

)

31

3)

3

3.1

3

3.1

(2)

(4)

3.1

4

3.2

g5



Review exercise 1

® 35

(o7

3x

(x=1D(2x-3)

a Show that the mean value of f(x) over
the interval [2, 5] is 3In=5 ()

b Use the answer to part a to find the
mean value over the interval [2, 5]
of f(x) + Ink where k is a positive
constant, giving your answer in the
form plIng. where p and ¢ are constants
and ¢ is in terms of k. (2)

¢ Section 3.2

f(x) =

- 1)

a Show that the mean value of f(x) over
the interval [1, 3] 1s =5~ 5”23 3)

b Use the answer to part a to find the

mean value over the interval [1, 3] of
—2f(x).

f(x) = x2 (2

(2)
« Section 3.2
|
Ve =X
Find the exact mean value of f(x) on the
interval [1, 3]. (4)

¢ Section 3.2

fx) =

f(x) = Inkx, where k is a positive constant.
Given that the mean value of f(x) on the
interval [1, 5] is %(91n5 - 4), find the value
of k. (4)

+ Section 3.2

Given that y = (arcsin x)?,

a prove that (1 = x?) g—i) =4y (4)
By dv

b deduce that (1 - xz)g—‘}; - 1% =2. (2
X ;

- Section 3.3

a Given that y = arctan 3x, and assuming
the derivative of tan x, prove that
dy 3
dx ~ 1+9x2

(3)
b Show that

fﬁkarctan3\=;(47r 3/3) 4)

<« Sections 3.3, 3.4

@) 41

@«

f(x) = arcsin x

1
a Show that f'(x) = 3
W= . ®)
b Given that y = arcsin 2x, obtain P
as an algebraic fraction. )

¢ Using the substitution x = %Sin 6, show
that

x arcsin 2 1
g Vgl i)
0 ¢« Sections 3.3, 3.4
Show that
2x+ 14y = darctanx + Inx
X +x

+ BIn(x*+ 1)+ ¢

where 4 and B are constants to be
found.

)

+ Section 3.5

3x24+ 5x

) a5 — 15
a Show that f(x) can be written in the form
A B
x-3" x*+5

where A4 and B are constants to be
found.

b Hence show that
[f(x)dx = Pln(x — 3) + Qarctan Rx + ¢
where P, O and R are constants to be
found. (4)

+ Section 3.5

(2)

X

o

The figure shows the finite region R,
which is bounded by the curve y = xe*,
the line x = 1, the line x = 3 and the
X-aXxis.

The region R is rotated through 360°
about the x-axis.



@ 45

Use integration by parts to find the exact 47
volume of the solid generated. (8)

¢ Section 4.1

N .
\ = 3sin%

M —
The curve with equation y = 3sin :2“
0 =< x = 2, 1s shown in the figure. The
finite region enclosed by the curve and
the x-axis is shaded.

a Find, by integration, the area of the
shaded region. @)

This region is rotated through 27 radians
about the x-axis.

b Find the volume of the solid
generated. (5)

¢ Section 4.1 48

VA . N

L,
0 g X

The figure shows a graph of y = xvsinx,
0<x<m.

The finite region enclosed by the curve
and the x-axis is shaded as shown in the
figure. A solid body S is generated by
rotating this region through 27 radians
about the x-axis. Find the exact volume
of S. (8)

« Section 4.1

Review exercise 1

The curve shown has equation x = Tll

The finite region shaded is bounded by the
y-axis, the line y = § and the line y = a.
The region is rotated about the y-axis
through 360°.

Given that the volume of the solid

generated 1s ?‘F—E find the value of a. (5)

« Section 4.2

Vi

=Y

X=)ycosy

The curve shown has equation x = ycosy.
The finite region shaded is bounded

by the curve and the y-axis. The curve
intersects the positive y-axis at (0, k).

a Show that k = % (2)

The region is rotated through 27 radians
about the y-axis.

b Show that the volume of the solid
generated is an® + br? where a and b
are constants to be found. (6)

« Section 4.2
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The diagram shows the curve C with
parametric equations

x=lnt,y=£=2,1>0
The finite region shown shaded is
bounded by the curve, the x-axis and the
lines x =In2 and x = b.
The region is rotated through 27 radians
about the x-axis.

Given that the volume of the solid
generated is 36w + 47 In 2, find the value
of b. (6)

& Section 4.3

=Y

.

0

The shaded region above is formed by the
x-axis, the lines x =0 and x =4 and the
curve C where the equation of Cis

__ 8

T+ 4x

A pottery vase is modelled by rotating
the shaded region through 360° about the
x-axis. Given that each unit on the axes
represents 2cm,

}(?

@ st

a show that the exact volume of the vase
can be written in the form amInb where
a and b are integers to be found. (5)

b Suggest a reason why the volume of
the vase may actually be less than your
answer to part a. (1)

+ Section 4.4

Va

T = W3- 1)

=¥

=
The diagram shows the curve with
equation
v= (73— e
a Show that the coordinates of the point
marked A4 where the curve crosses the
y-axis are (0, In6). (2)
The solid of revolution formed when
the shaded region is rotated through
360° about the y-axis i1s used to model a
prototype of a new type of orthopaedic
cushion. The prototype is 3D printed
using plastic filament.

Given that each unit on the axes is 1 cm,
b find, correct to 3 significant figures, the
volume of the prototype. (6)

¢ Suggest a reason why the amount of
filament used to print to model may
exceed your answer to part b. (1)

+ Section 4.4
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The diagram shows the curve C with
parametric equations

x=2sint, y=3sin2t, 0=t =< %

A jewellery pendant is made in the shape
of the solid of revolution formed when
the region marked R is rotated through
27 radians about the x-axis. Each unit on

the axes represents 0.5cm.

a Show that the volume of the pendant
can be found by evaluating the integral

%TNJ: sin2¢ cos t dt (4)

b Hence show that the exact volume of

the pendant is S cm?, (6)

5
Challenge

1 a Show that if w=e%, then
1"+ w"+ (W?)" { 1 if nis zero or a multiple of 3
3 ~ 1o otherwise
Let f(x) be a finite polynomial whose largest
power of x is a multiple of 3, so that
f(x) = ag + a,x + a,x* + ... + ayx*
whereaq, € R, ke N.
The sum S'is given by
S=a;+a,+a+ ... +a3k¢2a3p

b By considering a general term of f(x),
f(1) + flw) + flw?)
3

¢ Hence, by considering the binomial
expansion of (1 + x)*, show that

(45) 24 -2

r=0 31” 3

+ Section 4.4

show that § =

« Section 1.6

2 The region bounded by the x-axis and the
graph of the function
fx) = x;B
on the interval [2, %) is rotated through
360° about the x-axis.

Show that the volume of the described solid
is finite and find its value.
« Sections 3.1, 4.1

3 A continuous random variable, X, has
probability density function
A
f) =———, xeR
) 1+ <
where A is a constant.

a Given thatf

1
A=7

The variance of a continuous probability
distribution which is defined over the real
numbers and is symmetrical about
x=0is given by

[ “x2f(x) dx

-

b Show that X has infinite variance.

x)dx = 1, show that

The mean of a continuous probability
distribution which is defined over the

real numbers is given by f_ :xf(x) dx.

¢ Show that
iCa
m;qf dx:tim ﬂl+x2dx
and explaln why the mean of X'is
undefined. « Section 3.1
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Polar coordinates

After completing this chapter you should be able to:

e Understand and use polar coordinates -» pages 101-104
e (Convert between polar and Cartesian coordinates - pages 102-104
® Sketch curves with r given as a function of ¢ - pages 104-109
e Find the area enclosed by a polar curve - pages 109-112

® Find tangents parallel to, or at right angles to, the initial line
= pages 113-116

Prior knowledge check

1 Find the exact value of

i
f sin“6 dé « Pure Year 2, Chapter 11
0

2 y=Cosx + Sinxcosx
Find, in the interval 0 < x < 7, the values

of x for which d—l =0
dx

< Pure Year 2, Chapter 9

3 a Onan Argand diagram, show the locus of
points given by values of z that satisfy

|z-3i|=3
b Find the area of the region defined by
the set of points, R, where

Y

- v
Polar coordinates describe positions in terms
_ = of angles and distances. GPS navigation
={z:|z-3i|s3)N{z:0<argz<— - i
R={z:|z - 3l = g2 > systems use polar coordinates to triangulate
« Book 1, Chapter 2 the position of a ship or an aircraft.




Polar coordinates

@ Polar coordinates and equations

Polar coordinates are an alternative way of describing the position of a point P in two-dimensional
space. You need two measurements: firstly, the distance the point is from the pole (usually the origin O),
r, and secondly, the angle measured anticlockwise from the initial line (usually the positive x-axis), 0.

Polar coordinates are written as (r, 6). X
4 When working in polar coordinates

ra the axes might also be labelled like this:
w
"=z
________ X  _Pl,wor(n) ;
o |, |
0 ) :
9] x 0 Initial line

The coordinates of P can be written in either Cartesian form as (x, y) or in polar form as (r, 6).

You can convert between Cartesian coordinates and polar coordinates using right-angled triangle
trigonometry.

From the diagram above you can see that:

= rcosf=x m Always draw a sketch diagram

rsin@=y to check in which quadrant the point lies, and
m p2=yx2+y? always measure the polar angle from the positive

( y) X-axis.
0 = arctan =

Example o

Find polar coordinates of the points with the following Cartesian coordinates.
a (3,4) b (5,-12) ¢ (—=/3,-1)

Draw a sketch.

r=v32+42=>5 Use Pythagoras’ theorem to find r.
6 = arctan= = 0.927... |_

So the polar coordinates are (5, 0.227) Use trigonometry to find #. Give your answer in

radians.
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Chapter 5

Draw a sketch.

’7 Use Pythagoras' theorem to find .

r=y52 +(-12)2 =13

Use trigonometry to find 6, taking care to ensure

a = arctan s = 1.176... it is in the correct quadrant. You could also write
So # =-1176 this point as (13, 5.107) since —=1.176 + 27 = 5.107
So the polar coordinates are (13, -1.176)
= )
The sketch shows that the point is in the 3rd
quadrant.

Y

r Use Pythagoras' theorem to find r.

r=(=/3)7 + (-1)2 = 2

@ = arctan— = —
V3 e e ; n
T 7w The point is in the third quadrant so use # = —
Sof=m+—==— Tr T 6
6 6 [ 7 You could also use # = — - 2r = —=—
So the polar coordinates are (2. 6“) 6 6

Convert the following polar coordinates into Cartesian form. The angles are measured in radians.

47 27
"(10’3) b(&s)
a x=rcosh = 105954; =-5
y = rsinf = 10sin 4; =-5¢3
-
So the Cartesian coordinates are (=5, =5/3)
b x=rcostl = &cos 2; = =4
y = rsinfl = B8sin 2; =43

So the Cartesian coordinates are (=4, 4y3)

Polar equations of curves are usually given in the form r = f(f). For example,

r=2cosf
r=1+26
r=3 In this example r is constant.

You can convert between polar equations of curves and their Cartesian forms.
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Polar coordinates
Example o

Find Cartesian equations of the following curves.
& ¥=35 b r=2+cos20 ¢ r’=sin2f, 0<0=

SR

a r=5
You need to replace r with an equation in x and y.
—— User?=x?%+y% 5o the equation r = 5 represents
a circle with centre O and radius 5.

Square both sides to get r# = 25

Seo a Cartesian equation is x% + y= = 25

b r=2+ cos20 —‘
£ 1Al bicoE20) Yoy need an equat[o_n in .rand.y, so use x = rcos#.
This means first writing cos 26 in terms of cos#.
r=1+ 2cos*0
Multiply by r: Now use x = rcosf and ré = x2 + 2,

13 =r2 + 2récos?f
m Polar coordinates often give rise to

X2+ ¥ = x2 + 2 + 2x2 . . : :
(& Fpyes - complicated Cartesian equations, which cannot
Or (x4 %)z = 3x% + 2 be written easily in the form y = ...

1

c rP=sin2f, 0<0=

ral=

r* = 2sinfcosb Problem-solving

Multiply by r<: You need to use the substitutions x = rcosf
rt=2 x rsinfl x rcosf and y = rsiné. Use sin26 = 2sinf cosd and then
(X2 + )2 = 2xp multiply by r2.

Example o

Find polar equations for the following:

a )’ =4x b x2—)?=5 ¢ pW3=x+4

a y°=4x B Substitute x = rcos# and y = rsiné.
résin®f = 4rcosf
rsin“fl = 4cosf Divide by r and simplify.
p= 4 cofﬁ = dcotfcozecl

sin<f

S0 a polar equation is r = 4cotflcosect

b x2-y2=5
rZcos?f = r2sin2f =5 Substitute x = rcos# and y = rsiné.

rZ(cos?f — sin?f) = 5

r2cos20 =5 Use cos 26 = cos?fl — sin?.

So a polar equation is rZ = S5sec 26

1073



Chapter 5

c W3=x+4
Substitute x = rcos# and y = rsinf and then try to

simplify the trigonometric expression.

n3sinf =rcosl + 4
Hy3sinf = cos)= 4

J(% sinfl — ':'l-:TCO5I()i] = —

ra’m(f} . é) ) Use the sin(4 — B) formula.

So a polar equation is r = 260556[0 -

Exercise @

1 Find polar coordinates of the points with the following Cartesian coordinates.
a (5.12) b (-5, 12) c (=5,-12)
d (2,-3) e (V3,-1)

e

2 Convert the following polar coordinates into Cartesian form.
T 3
‘(o] > (6. c (o3)

6 6 4
a (10,27 e (2.7
3 Find Cartesian equations for the following curves, where « is a positive constant.
& 7=12 b r=3sect ¢ r=>5cosect
d r=4atanfsect e r=2acosl f r=3asind
g r=4(1 - cos26) h r=2cos?0 i rP=1+tan20
4 Find polar equations for the following curves.
a x2+)y?=16 b xy=4 Gl S o e
d x2+y?-2x=0 e (x+y) =4 f x—-y=3
g y=2x h y=-/3x+a i y=x(x-a)

Challenge

Show that the distance, 4, between the two points
(ry, 0y) and (r,, ) in polar coordinates is

d=\/rf+r;—2rlrzc05(€1—92}

@ Sketching curves

You can sketch curves given in polar form by learning the shapes of some standard curves.
= r=ais acircle with centre O and radius a.

» O = «is a half-line through O and making an angle « with the initial line.

= r=qf is a spiral starting at O.
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Polar coordinates
Example o

Sketch the following curves.

ar=5 bt’):%r

where a is a positive constant.

c r=ab

This is a standard curve: a circle with centre O

i and radius 5.
! 0=0
' I'nit'ual line
b
This is another standard graph: a half-line. Notice
it is only ‘half’ of the line y = —x. The other half of
the line would have equation ¢ = —% orfl= ?T?r
0. Initial line
c =
-
6=0
Iibial line This is another standard curve: a spiral. It crosses

the horizontal axis at —a, 0 and 2aw and

the vertical axis at % and —l‘zﬂ. The curve here

drawn for values of #in the range 0 = 0 < 2.

You can also sketch curves by drawing up a table m Some graph-drawing programs and
of values of r for particular values of § graphical calculators will sketch polar curves
[t'15 commion to choose only values of ;’) that for negative values of r so take care when using

. o these tools to help you.
give positive values of r.
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Sketch the following curves.

(%]

a r=a(l +cosb) b r=asin3éd ¢ rr=ga’cos20

a r=all +cosb)

W)
5

0 0 == | 2= Problem-solving
= 24 i 0 ; 24 When sketching polar curves it is useful to plot
points for key values of #. Make a table of values

for 6 at multiples of % to determine the points

r=al(l + cosé) at which the curve meets or intersects the
coordinate axes.

no |3

fi=

ks
£

miC)
24 Ynitial line
This curve is ‘'heart’ shaped and is known as a
cardioid.
b r=asin34
i , Since we only draw the curve when r = 0 you
Need to consider ; :
o D 47 G need to determine the values of @ required.
Osf=—, —=f=srmand—=<0=<=—
3 3 3
e P Choose values of # which give exact values of r.
¢ 2 6 3 The values shown here define the first loop of
r O a 0 the curve. The values of r will be the same in the

other two loops.

Problem-solving

The curve given by r = asin 36 is typical of the
patterns that arise in polar curves for equations
of the form r = acosnf or r = asinnf. They will
have n loops symmetrically arranged around O.

c r2=g?co=20

You need values of @ in the ranges

-Z =f= Z and -?’; =0 = —E-;?-T— Establish the values of # for which the curve exists.
:"T T 3 | fl
o (74| 0 Zl ?r L 54~r
Draw up a table of values and sketch the curve.
I O 17, 0] D) u @
f =

ol

| ¥ =a°cos 20

N o0
a i e
”""" line @ Explore curves given in polar form o

! using GeoGebra.
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Polar coordinates

Curves with equations of the form r = a(p + ¢ cos#) are defined for all values of 8 if p = ¢. An example
of this, when p = ¢, was the cardioid seen in Example 6a. These curves fall into two types, those that
are ‘egg’ shaped (i.e. a convex curve) and those with a ‘dimple’ (i.e. the curve is concave at § = 7).

The conditions for each type are given below:
You can prove

these conditions by
considering the number
of tangents to the curve
that are perpendicular to
the initial line.

'egg’ shape when p = 2¢ dimple’ shape when ¢ = p < 2¢ - Example 14

Example

Sketch the following curves.

a r=a(s5+ 2cosb) b r=a(3+ 2cosb)
a r=al5+ 2cost)
T 3T
f! O ) ™ >
Draw up a suitable table of values.
r Ta Sa 2a Sa
B =

r=alb + 2cosé)

Since 5 > 2 x 2 there is no 'dimple’.

=0
3a 7a ['11t'|a| line
S5a’
br=al3+2cosf)

m 3

0 0 -,—.— " '
c 2 Draw up a suitable table of values.

r Sa 3u a 3a

Since 3 < 2 x 2 there will be a 'dimple’ for 6 close

to .
=0

-

= e y
28 nitial line
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Chapter 5

@ If the pole is taken as the origin, and

the initial line is taken as the positive real axis,
: then the point (r, 6) will represent the complex
diagram. number re « Secti

ion 1.1

a Show on an Argand diagram the locus of points given by the values of z satisfying
|z—-3~-4i|=5
b Show that this locus of points can be represented by the polar curve r = 6¢cosf + 8sind.

You may also need to find a polar curve to
represent a locus of points on an Argand

a Ima

This locus is a circle with centre 3 + 4i and radius 5.

b In Cartesian form, (x — 3)% + (y — 4) = 25
(rcosfl — 3) + (rsinfl — 4)2 = 25 Substitute for x and y in polar form.

r2cos26 — Greost + 9 + r2sin2f
— Brsinf + 16 = 25
ré(cos?f + sin®f) — Grecosf — &rsind = O
ré = @rcosf + 8rsind
r=G6cosH + Bsink

1 Sketch the following curves.

ar=6 bﬂ:i—ﬁ ¢ 6=—7
d r=2sect e r=23cosect f r=23{-:c(.9—%)
g r=asinf h r=a(l - cosb) i r=acos3f
i r=a(2+cosh) k r=a(6+ cosl) I r=a(4 + 3cosf)
m 7 =a(2 + sinf) n r=a(6+sind) 0o r=a(4+3sind)
p r=20 q rr=a*sinf r r’=a’sin2f
@ 2 Sketch the graph with polar equation
r==k SCC(-Z*—O)
where & is a positive constant, giving the coordinates of any points of intersection with the
coordinate axes in terms of k. (4 marks)
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Polar coordinates

@ 3 a Show on an Argand diagram the locus of points given by the values of z satisfying

|z-12-5i|=13 (2 marks)
b Show that this locus of points can be represented by the polar curve
r=24cosf + 10sinf (4 marks)
@ 4 a Show on an Argand diagram the locus of points given by the values of z satisfying
lz+4+3i|=5 (2 marks)
b Show that this locus of points can be represented by the polar curve
r=-8cosfl — 6sinf (4 marks)

@ Area enclosed by a polar curve

You can find areas enclosed by a polar curve using
integration.

= The area of a sector bounded by a polar curve
and the half-lines @ = o« and 0 = 3, where f is
in radians, is given by the formula

Area =} f Pradg
(4]

Find the areca enclosed by the cardioid with equation r = a(1 + cos®).

Problem-solving

Start by sketching the curve. You can simplify
r=a(l + cosf) your calculation by using the fact that the curve
is symmetric about the initial line. Hence you can
integrate from 0 to = and then double your answer.

Initial line

0==
2

=0

Initial line

Use the formula for area. Remember to square
- the expression for r.
The curve is symmetric about the initial line
and so finding the area above this line and : T .
You can use trigonometric identities for cos 26 to
integrate terms in cos?# or sin?6:

doubling it gives:
Area=2 % a :(T + cos#)E df
[ ) costg = 1+ cos28

2 %
=a?[ (1 + 2cos6 + cos?0)df :

0

2[™(3 o 1 ' ; R :
= ”'JO |2 + 2cosb + 7 cos26) df m Unlike Cartesian integration, areas
== [—

2[20 + 25inf + Lsin 29] _ in the third and fourth quadrants do not produce

¢ Pure Year 2, Chapter 11

negative integrals. You could obtain the same
result by integrating between 0 and 27

2% 3a’m
%J; a?(1 + cosf)2df = 5

o= fr=(|)?r +0+0) - O)
_ 3acm

2
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Example @

Find the area of one loop of the curve with polar equation r = asin4#.

Find the values of # which will give the beginning

r = asin4f will have one loop for r and end of a loop by solving r = 0.
0sg=<Z
5 2 Use the area formula
Area =+ J ‘red = E!:-f “5in® 46 db) i .
0 210
2 .si; J,I.'é“ _ con80)df Use the trigonolnle::gz i}dﬂentit*,.r for cos 26. In this
B : L case, sin4f = ————
@ [H g _L—'in&()]" 2
N 4 & Q
_E(E_-’?i”'?ﬁ)_o ™ Remember sin 27 = 0.
~4\4 o)
= f;é_ @ Explore the area enclosed by a O

loop of the polar curve with the form
r=a sin 0 using GeoGebra.

m r = sinnf has n loops and so a simple way of finding the area of one loop would appear to be
i 2
to find %f: r¢d@ and divide by n. This would give %?E

The reason why this is not the correct answer is because when you take r? in the integral you are also
including the » loops given by r < 0. You need to choose your limits carefully so that » = 0 for all values
within the range of the integral.

a On the same diagram, sketch the curves with equations r = 2 + cosf and r = Scosf.
b Find the polar coordinates of the points of intersection of these two curves.

¢ Find the exact area of the region which lies within both curves.

A table of values would consider

3T
o=0=L i
0,2,1'1' >

a 0=

r=2 + cosf

4=0 L This is the region required in

-------- > part .
Initial line

Form a suitable equation to find
the points of intersection.

b The points of intersection are given by 2 + cosf = Scosf
S50 4cosfl=2

W
0
o
-
)
—
O
w
%
Q
8]
E{';
el
)
wn
ay
e,
m
no
H

3 5 ) J L Solve for # and then substitute in
3 = 5cosf to find the value of r.
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Polar coordinates

Remember that the area
formula gives areas of sectors.
So you need the sector formed
by the purple curve and the
fim. sector formed by the blue

Initial line curve. Again you can use
symmetry about the initial line.

Area = 2 x l L}(E + cosf)?df + 2 x lf(5 cos )? df

= J‘u'l{4 + 4cosb + cos?0)dh + f-.i'25 cos? f dfl
Square and use the

cos26\ ., . rizs
= J ( + decosl) + - 2 -)df-,‘ + LL‘-Q-U + cos 26) déf iseetizidant o
sin 26]° cos 26.
[ H+45|nﬁ’+ﬂ42_'q +._£‘_3'._.‘[H+:>Ilz_2£
3 3 2 m .2r" 25 3
43T
=T~

Exercise @

1 Find the area of the finite region bounded by the curve with the given polar equation and the
half-lines = @ and 0 =

T m . T w
= f} = _— = i ey = kY, =)
a r=acost,a=0,0 5 b r=a(l +sinf), o > o) 5 ¢ r=asmif, o 6 B 4
d r2=acos26, a =0, am% e r2=d’tanf, u_n,dag f r=2a0,0=0,0=n
g r=a(3+2c0s0),a=0,08= %
; ; g
2 Show that the area enclosed by the curve with polar equation r = a(p + gcosf) is -2—~;m3.
3 Find the area of a single loop of the curve with equation r = a cos 36.
: : . 1877w
® 4 A curve has equation r = a + 5sinf, ¢ > 5. The area enclosed by the curve is 5
Find the value of a. (5 marks)
s
5 The diagram shows the curves with equations r = asin46 =g
and r=asin2ffor0 =0 =< g i
The finite region R is contained within both curves. r=asin2f
Find the area of R, giving your answer in terms of a.
(8 marks) r=asind
0] Initial line
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T
6 The diagram shows the curves with equations r = 1 + sinf b=y
and r = 3sinf. i

The finite region R is contained within both curves.
Find the area of R. (8 marks)

r=3sind

r=1+sinf

S ; T 0 Faitial fine
7 The set of points, 4, is defined by '
A:{z:—;—iéarg:ﬁ[}}ﬁ z:lz =4+ 31| = 5}
a Sketch on an Argand diagram the set of points, A. (4 marks)

Given that the locus of points given by the values of z satisfying |z — 4 + 3i| = 5 can be
expressed in polar form using the equation r = 8 cos/ — 6 sinf),

b find, correct to three significant figures, the area of the region defined by 4. (8 marks)

8 The set of points, A, is defined by

m i
A= iy <argzs ‘n‘} Niz:lz+ 12 - 51| = 13}
a Sketch on an Argand diagram the set of points, A. (4 marks)
b Find, correct to three significant figures, the area of the region defined by A. (8 marks)
9 The diagram shows the curve C with polar equation g=L
w -2
rml+c033(},{}£ﬁis;§ B :
242 :
At points A4 and B, the value of r is 2" |
Point A4 lies on C and point B lies on the initial line. ! C A
Find, correct to three significant figures, the finite area m
bounded by the curve, the line segment 4B and the 0, B Initial line
initial line, shown shaded in the diagram. (9 marks) "
1 L ] = E
10 The diagram shows the curves r = 1 + sinf) and ¢ 2
= 3sinf. E
Find the shaded area, giving your answer correct to oS
two decimal places. (8 marks) re=BE
4Jr=1+sind
0' fnitial line

Challenge

The cross-section of a shell is modelled using the
curve with polar equation r = k6, 0 < f < 47, where k
is @ positive constant. The horizontal diameter of the

shell, as shown in the diagram, is 3cm.

i Initial li
a Find the exact value of k. nitial line

b Hence find the total shaded area of the cross-
section,
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Polar coordinates

Tangents to polar curves

If you are given a curve r = f(0) in polar form, you can write it as a parametric curve in Cartesian form,
using @ as the parameter:

x =rcosf =f(H) cost
y=rsinf=f(@)sind

By differentiating parametrically, you can find the gradient of the curve at any point:

dy
dy When d—; = 0, a tangent to the curve will be horizontal.
dy _dé
dx dx dx
do When Eig =0, a tangent to the curve will be vertical.

You need to be able to find tangents to a polar curve that are parallel or perpendicular to the initial
line.

?

= To find a tangent parallel to the initial line set d—'; =0.

= To find a tangent perpendicular to the initial line set

Find the coordinates of the points on r = a(1 + cos#) where the tangents are parallel to the initial
line # = 0.

dx _

dg ol

dv

¥ : E = Find an expression for y and then solve = 0.
= a(cosf + cos?f — sin?f) de

df

So O=2cos0 + cosfl — 1

O =(2cosfl — 1){cost + 1)

y=rsinf = a(sin + sinflcos ) ]

cosf=1 = f==xZ Solve the equations to find # and then substitute
. 3 = back to find r.
{ =l
50 r=afl + 3z = >

cosfl = -1 = g= T, and so r = 0 L Prob[em_so[ving (31_?! l.:_-)
3

So the tangents parallel to the initial line
9 K Youcanseefhiese nrrnosmreosseesmegzeany st

are at (32“ :t-’-":) and (O, ). tangentsona

i sketch of
y=a(l + cosf)
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Example @

Find the equations and the points of contact of the tangents to the curve r =asin26,0 <0 < g
that are:
a parallel to the initial line b perpendicular to the initial line.

Give answers to three significant figures where appropriate.

Form an expression for y and differentiate using

a y=rsinfl =asinflsin26
wip the product rule.
d_-f‘,‘ = alcosllsin20 + 2cos 20sinf)
= 2asin@(cos?8 + cos?l - sin?f) | Usesin26 = 2sinfcos® and then take out the
% =0 =323n=0=0=0 common factor. Then use cos 26 = cos?6 — sin?d
df)
- 2cosffl = sin2fl = tanf = +v2 A ; :
or e . ;H_ o ;‘ | Choose values of # within the range given in the
== Q050 question.
So 0=0o0r0955
WS S Ve 1 o

and r=0orr=2ax 7373 If tana = v2 then drawing a triangle shows that
D : . V2 1

- 2ay2 sina =—and cosa = —

So the points are (O, O) and (_—'g—-. 0.955J =B =73

The equation of the initial line is # = O and Lsesined = Zaindcosdtoindr

that is the tangent through (O, O).
The equation of the tangent through

L&%E. 0,955)

) 2ay 2 ) 2ay2 V2 Ag

is y= X sinf = Ko
3 3 \.'I3 3'\-“‘3

Use y = rsiné to find the equation of the tangent

S0 the equati f the t =nt s iy |
kRS G, O FTange = and write it in polar form using r = ycosecé.

4
r=——cosect
Iy

b x = rcost = acosfsin20 Form an expression for x and differentiate using
ax

the product rule.

w1 —asinfsin20 + 2acosfcos 26

= 2acos (—sin2f + cosZf — sin? f) _ )

dx T Use sin 26 = 2sinflcosf and then take out the
1

A i common factor. Then use a formula for cos 20,

So the y-axis is a tangent.

Or cos?f — 235in8 =0 = tanf = £— 1 ) )
Ve Ifa = - then drawing a triangle shows that
So #=0615 (e

V2 1 2av2 Cosx = % and sina = L
and r = 2a % 3 - Al v3 V3
' é "’._2 . Use sin24 = 2sin A cos 4 to find r.
The tangent is at (-:% = 0,615)
. 2a/2 _ 2av2 V2 4a
X=—p— Roosa=—p X == —
- 3 V3 3V3
5o the equation of the tangent is:
- 4a - Use x = rcosf to find the equation of the tangent
3V3 in the form r = xsecf.
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Polar coordinates
Example @

The curve C has equation r = (p + gcosf), where p and ¢ are positive constants and p > g¢.
Prove that the curve is convex for p = 2¢, and has a dimple for p < 24.

Problem-solving

If the curve is not convex then there will be
more than two tangents to the curve that are
perpendicular to the initial line.

o
1]
=

¢=0

2da  |nitial line

X =rcosf = pcost + gcos®d ) ‘ ) ]
e Find an expression for x and differentiate.
8- O = 0=-psinf — 2gcosfsinf

= 0 = —sinf(p + 2¢cosb)

This has solutions
sinf=0whenf@=0orm _]

- i P Solve the equation and consider all possible cases.
and cosfl = —— J

2q
If p < 2¢ then there will be two solutions
to this equation in the second and third The two tangents at the two points represented
quadrants (the green tangents). In this case by these solutions have the same equation.

the curve is not convex and has a dimple.

If p = 2¢ then the solution is § = w and so
there are only two tangents (the blue ones).
[n this case the curve is convex.

If p > 2¢ then there is no solution to this
equation and only the two blue tangents are
possible. In this case the curve is convex.
Hence the curve is convex for p = 24, and
has a dimple for p < 24q.

Exercise @

1 Find the points on the cardioid r = a(1 + cos ) where the tangents are perpendicular to the
initial line.

2 Find the points on the spiral r = %, 0 =< # = 7, where the tangents are
a perpendicular to the initial line b parallel to the initial line.
Give your answers to three significant figures.
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Chapter 5

s T
—<f<-—
4 4 4
the initial line, giving your answers to three significant figures where appropriate.

3 a Find the points on the curve r = acos 20, — . where the tangents are parallel to

b Find the equations of these tangents.

® 4 Find the points on the curve with equation r = a(7 + 2cos ) where the tangents are parallel to
the initial line. (6 marks)

® 5 Find the equations of the tangents to r = 2 + cos 6 that are perpendicular to the initial
line. (6 marks)

® 6 Find the point on the curve with equation r = ¢(1 + tan), 0 = f < %i where the tangent 1s
perpendicular to the initial line. - (6 marks)

7 The curve C has polar equation

r=1+3cosf, 0<0<73

The tangent to C at a point 4 on the curve is parallel to the initial line.
Point O is the pole.
Find the exact length of the line OA. (7 marks)

8 The diagram shows a cardioid with polar equation 0= %
r=2(1 +cosf) ;

The shaded area is enclosed by the curve and the
vertical line segment which is tangent to the curve
and perpendicular to the initial line.

r=2(1 + cost)

Find the shaded area, correct to three significant
figures. (8 marks)

[

Initial line

Mixed exercise o

® 1 Determine the area enclosed by the curve with equation
=l +%sim‘?), a>0, 0=6<2r,

giving your answer in terms of « and . (6 marks)
2 a Sketch the curve with equation r = a(1 + cosf) for 0 < 0 < 7, where ¢ > 0. (2 marks)
b Sketch also the line with equation r = 2asec# for "‘g <h< % on the same diagram. (2 marks)

: : ; T ; ; s
¢ The half-line with equation f = o, 0 < o < 5> meets the curve at 4 and the line with equation

r=2asech at B. If O is the pole, find the value of cosa for which OB = 20A. (5 marks)

3 Sketch, in the same diagram, the curves with equations » = 3cosf and r = 1 + cos# and find
the area of the region lying inside both curves. (9 marks)
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Polar coordinates

@ 4 Find the polar coordinates of the points on > = ¢”sin 20 where the tangent is perpendicular

to the initial line. (7 marks)

5 a Shade the region R for which the polar coordinates r, ¢ satisfy
r=4cos2f for —% sf= % (2 marks)
b Find the area of R. (5 marks)

@ 6 Sketch the curve with polar equation r = a(1 — cosf), where a > 0, stating the polar
coordinates of the point on the curve at which r has its maximum value. (5 marks)

7 a On the same diagram, sketch the curve C, with polar equation

r=2cos24, —% <()5§%

and the curve C, with polar equation ¢ = % (3 marks)
b Find the area of the smaller region bounded by C, and C.. (6 marks)
® 8 a Sketch on the same diagram the circle with polar equation r = 4cos ) and the line with
polar equation r = 2 secf. (4 marks)
b State polar coordinates for their points of intersection. (4 marks)
9 The diagram shows a sketch of the curves with §=

£
2
j

polar equations
r=a(l +cosf) and r = 3acosf,a >0

a Find the polar coordinates of the point of
intersection P of the two curves. (4 marks)

Initial line

b Find the area, shaded in the figure, bounded
by the two curves and by the initial line = 0,
giving your answer in terms of « and . |

(7 marks)

(E/P) 10 Obtain a Cartesian equation for the curve with polar equation
a r2=sec20 (4 marks)

b r?=cosec 26 (4 marks)

@ 11 a Show on an Argand diagram the locus of points given by the values of z satisfying

lz=1=i|=v2 (2 marks)
b Show that this locus of points can be represented by the polar curve
r=2cosfl + 2sinf (4 marks)
The set of points, A4, is defined by
A= {::% = argz = g} Nn{z:lz-1-i|=v2}
¢ Show, by sketching on your Argand diagram, the set of points, A. (2 marks)
d Find, correct to three significant figures, the area of the region defined by A. (5 marks)
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@ 12 The diagram shows the curve C with polar equation =
r=4cos20, 0595%

At point A the value of ris 2. Point A lies on C and
point B lies on the initial line vertically below A.

Find, correct to three significant figures, the area of the m
B

finite region bounded by the curve, the line segment TN
AB and the initial line, shown shaded in the :
diagram. (9 marks)

Initial line

13 The diagram shows the curve with polar equation g=
r=4sin20, Uéf)sg

The shaded region is bounded by the curve, the initial

m
3
i
1
]

1

. — ; i r=4sin2f
line and the tangent to the curve which is perpendicular :
to the initial line. 5
Find, correct to two decimal places, the area of the :
shaded region. 8 marks : >
& ( ) : Initial line

Challenge

The curve C has polar equation r = v/24.
Show that an equation for the tangent to the curve at the point where

=%is 20w — &)y + 2(r + 4)x = 72

Summary of key points

1 Fora point P with polar coordinates (r, #) and Cartesian coordinates (x, y),
¢ rcosf=xandrsinf=y
» r2=x%+y% 6 =arctan (%)
Care must be taken to ensure that @ is in the correct quadrant.

2 -+ r=aisacircle with centre O and radius a.
* @ =« is a half-line through O and making an angle o with the initial line.

» r=afis a spiral starting at O.

3 The area of a sector bounded by a polar curve and the half-lines # = o and @ = 3, where @ is in
radians, is given by the formula

18
Area = EL r2do
d f
4 + To find a tangent parallel to the initial line set d—; =0

» To find a tangent perpendicular to the initial line set % =0.
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Hyperbolic functions

Objectives

After completing this chapter you should be able to:

e Understand the definitions of hyperbolic functions
= pages 120-123
e Sketch the graphs of hyperbolic functions - pages 121-123
Understand and use the inverse hyperbolic functions
= pages 123-125
® Prove identities and solve equations using hyperbolic
functions -» pages 125-129

e Differentiate and integrate hyperbolic functions
= pages 130-142

f(x) =2e*—e>
Solve the equation f(x) = 2.
4« Pure Year 1, Chapter 14

Show that

Hyperbolic curves feature often in .
architectural modelling. A hanging chain —tan?x=1 & Pure Year 2, Chapter 6

: ; = cos®x
might look like a parabola but it is actually a

w
curve called a catenary which has equation Show thatf e¥sinxdx = %(1 + e7).
G 0
y =acosh (%) -» Mixed exercise Q23 « Pure Year 2, Chapter 11




Chapter 6

@ Introduction to hyperbolic functions

Hyperbolic functions have several properties in common with trigonometric functions, but they are
defined in terms of exponential functions.
o e'—.\'
2
er+e
2
sinh x
cosh x

= Hyperbolic sine (or sinh) is defined as sinh x = g

= Hyperbolic cosine (or cosh) is defined as cosh x =

= Hyperbolic tangent (or tanh) is defined as tanh x =

You can use the definitions of sinh x and cosh x to write tanh x in exponential form.

sinhx _g*—g~> . 2 il
coshx 2 ef+e™ e‘+e

tanhx =

Multiplying the numerator and denominator of the final expression through by e~ gives:

e**-1
er+1

m tanhx =

There are also hyperbolic functions corresponding to the reciprocal trigonometric functions:

1 2
cosechx = Gnhx = ef-p7 @ You won't need to use these
) functions in your exam, but they
sechy = = : 2 == are useful to know, and if you are
coshx  e'+e- confident with them you can use
2x ¥ % ;
- T— 1 _ e _+ 1 them to simplify your working.
tanhx  e®-1
Example o
Find, to 2 decimal places, the values of:
a sinh3 b cosh ] ¢ tanh0.8
a sith3 =2 “26_3- =10.02 (2 d.p)
1 =1
b coshl = g—fz—'ﬂ— =154 (2 d.p)
¢ tanh08=5_"1 =066 (2 dp)
& e
HETE o
Find the exact value of tanh (In4).
- 224 _ 4 E 8"_"}:{ | N E.nc:, -1
tanh(In4) = e2ind 4 4 = elnd? 4 1 T enié 4 1
_le-1_15 Ink —
=TI =T7 Use elnk = k.
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Hyperbolic functions
Example o

Use the definition of sinh x to find, to 2 decimal places, the value of x for which sinh x = 5.

e a5 et -e*=10
< & Multiply both sides by ev.
2% — 1 = 10e*
e®*—10e* - 1=0 1 The substitution u = e* turns this into the
e*=5 £ +V26 quadratic equation #*—10u—-1=0.
= e*=5+V26 l_
So x = In(5 + V26) = 2.31 (2 d.p) e* cannot be negative.
You can sketch the graphs of the hyperbolic functions by VA b e

considering the graphs of y=e*and y = e

difiops eF—g> et + (—e™) V=sinhx
T 2 B 2
\//%

so the graph of y = sinh x is the ‘average’ of the graphs of
y=e‘andy=-e™>

For the graph of y = sinh x, i i

+ when x is large and positive, e~* is small, so sinh x ~ %e"

+ when x is large and negative, e* is small, so sinh x =~ ~—%e—-"

= For any value q, sinh (—a) = —sinha = >

f(x) =sinhxisan

odd function since f(—x) = — f(x).

Consider the graphs of y =e¥and y = e™.
¥+ e
2

so the graph of y = cosh x is the ‘average’ of the graphs of
y=e*and y = e

coshx =

For the graph of y = cosh x,
« when x is large and positive, e~ is small, so cosh x = %e-“

- when x is large and negative, e* is small, so cosh x ~ %e—-“

= For any value q, cosh (-a) = cosha

m f(x) = cosh x is an even

function because f(-x) = f(x).

=Y

121



Example °

Sketch the graph of y = tanh x.

sinh X
tanhx = 505? m Explore graphs of hyberbolic O

When x = O, tanhx =9 =0 functions using GeoGebra.

. gt . 1 . Ny
When x is large and positive, sinh x & se* and

| x
coshx = 5e*, so tanhx = 1.

Wi e iae i npae. Sl whe Consider the graphs of y = sinh x and y = cosh x
2 , sinh :

and coshx = ze™, s0 tanhx =~ -1,
and x — —o0.

As x — o, tanhx — 1 and as x — —oq,

tanhx — =1

For f(x) = tanhx, x € R, the range of f is

-1 < flx) <1
y=-1and y =1 are asymptotes to the curve.
¥ ]
_______________________ |
y=tanhx
5 You should always include any asymptotes on a
0, ¢ sketch graph.
______________________ e
1 Find, correct to 2 decimal places:
a sinh4 b cosh—é ¢ tanh(-2)
2 Write, in terms of e:
a sinh 1 b cosh4 ¢ tanh0.5
3 Find the exact values of:
a sinh(In2) b cosh(ln3) ¢ tanh(In2)

to work out the behaviour of y =tanhx as x — oo

In questions 4 to 6, use the definitions of the hyperbolic functions (in terms of exponentials) to find

each answer, then check your answers using an inverse hyperbolic function on your calculator.
4 Find, to 2 decimal places, the values of x for which cosh x = 2.

5 Find, to 2 decimal places, the values of x for which sinhx = 1.

6 Find, to 2 decimal places, the values of x for which tanh x = —%
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Hyperbolic functions

7 On the same diagram, sketch the graphs of y = cosh 2x and y = 2 cosh x.

8 Find the range of each hyperbolic function.
a f(x)=sinhx,xeR
b f(x)=coshx, xR
¢ f(x)=tanhx, xR

@ 9 a Sketch the graph of y = 3 tanh x + 2.
b Write down the equations of the asymptotes to this curve.

Challenge I mer Ry graphs of:

a p=sechx b y=cosechx ¢ y=cothx

@ Inverse hyperbolic functions

You can define and use the inverses of the hyperbolic functions.
If f(x) = sinh x, the inverse function f~! is called arsinh x.

The graph of y = arsinh x is the reflection of the graph of y = sinh x
in the line y = x.

The inverse of a function is defined only if the function is one-to-
one, so for cosh x the domain must be restricted in order to define
an inverse.

For f(x) = coshx, x =0, f-1(x) = arcoshx, x =1

= The following table shows the inverse hyperbolic functions,
with domains restricted where necessary.

Hyperbolic function Inverse hyperbolic function
y=sinhx y =arsinhx
y=coshx,x=0 y=arcoshx,x=1
y=tanhx y=artanhy, |x| <1

(3 marks)
(2 marks)

L.~y =arsinhx

(o] X

¥ =cosh;\‘. x=0

s

e
Sy=x
Fd

-

A

arsinh, arcosh and

artanh are sometimes written as
sinh~!, cosh~! and tanh-t.
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Chapter 6

You can express the inverse hyperbolic functions in terms of natural logarithms.

Show that arsinh x = In (x + vVx2 + 1).

Let ¥ = arsinh x
X = sinhy

el = g}
X =
2

et —egV=2x

Use the definition of sinh.

e2y — 1 = 2xe’ Multiply by e’

e —-2xe'=-1=0

e -xP-x2-1=0 Problem-solving

e =x+Vx? + 1 . _ . L
e - 2xe’ —1=0is a quadratic in e".

V= x =V x2 + 1 be i ' /X2 +1 ¢ 2 : .
e’ =x —vx* + 1 can be ignored since vx= + 1 > Xx, You can write it as (e*)2 — 2xe* — 1 =0 and

and would give a negative value of €', which is not then complete the square.
possible.
So e =x+VxZ+ ]

y=Inlx + Vx2 + 1)
= arsinhx = |F'I(,\f + ,".-"J\-i-'_" i T]

Show that arcoshx =In(x +vVx>-1), x = 1.

Let y = arcosh x Use the definition of cosh.
x =coshy

e’ + e — Multiply by e.
X =

2

e’ +e” = 2x Form and solve a quadratic in e’.
eZ + 1 = 2xe’ |7
e —-2xe'+1=0

—  Note that both x + Vyx’=1and x—=vVx?-1 are
(& =-xP-x2+1=0 positive.

Soe'=x+vVx2 -1

y=lInlx £ Vx2=1)

arcosh x is always non-negative. For all values of
x>1,x—Vx? -1 <1so the value of
= arcosh x = In(x + vx2 - 1) In(x—vx2=1) is negative.

You can use a similar method to express artanh x in terms of natural logarithms.

The following formulae are provided in the formula booklet and can be used directly unless you are
asked to prove them .

= arsinhx=Inlx+/x2+1) = arcoshx=Inlx+/x2-1), x=1
1 1+x
= artanhx = Eln( 1 x), x| <1
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Hyperbolic functions
Example o

Express as natural logarithms:

a arsinh | b arcosh2 c artanh%

a arsinh1 = In(1+v1Z+1) = In(1 + v2)
b arcosh2 = In(2 + V27 = 1) = In(2 + V3)

1 1
c artanh§ = El

Exercise @

1 Sketch the graph of y = artanh x, |x| < 1.

1+ - ' -
H : 1r12 Iny2 ——— Usealnx=lnx

(P) 2 Sketch the graph of y = (arsinh x)2.

3 Prove that artanh x = %ln ( : t i) (5 marks)
4 Express as natural logarithms:
a arsinh2 b arcosh 3 c artanh%
5 Express as natural logarithms:
a arsinhv2 b arcoshv3 ¢ artanh0.1
6 Express as natural logarithms:
a arsinh (-3) b arcosh:f; ¢ artanh \%
7 Given that artanh x + artanh y = In /3, prove that y = 2: — 21. (6 marks)

m Identities and equations

You can find and use identities for the hyperbolic functions that are similar to the trigonometric
identities.

Prove that cosh? 4 —sinh? 4 =1

LHS = cosh? 4 - sinh2 4 = ( 3‘—?-_"-'-)4 = (?'J “--e-:-_"!-)h Use the definitions of cosh and sinh.

et + 2 +e‘°') (e” 2 +e—3-4)

A
RO e
4 1 =RHS &
S=1=

|J|
|1|

s cosh?A4 -sinh24 =1
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Example o

Prove that sinh (4 + B) = sinh 4 cosh B + cosh 4 sinh B

RHS = sinh A cosh B + cosh A sinh B

5 en ) (e g5

A+B A-B _ s—A+B _ o-A-R A+B_ ~A-=R —-A+R _ —-A-R
- (e +e e e & (e et i e e
4 4

A+B _ -A-B A+B _ a—(A+B)
2e 426 =€ 26 = sinh (4 + B) = LHS

You can prove other sinh and cosh addition formulae similarly, giving;
= sinh (4 & B) = sinh A cosh B &= cosh A sinh B
s cosh (4 + B) = cosh 4 cosh B &+ sinh 4 sinh B

Prove that cosh24 = 1 + 2sinh? 4

RHS =1+ 2sinh® 4

Il

1]

14 2( e’ 72 8_";)( e _2 e—"’) Use the definition of sinh.

!32.4 2 2 + 6—2,4) . a (SE.‘I _L_ 6_2’1_)
1+ 2( ——2a ) = 1 =1+ R

= cosh2A4 = LHS

Given a trigonometric identity, it is generally possible to write down the corresponding hyperbolic
identity using what is known as Osborn's rule:

+ Replace cos by cosh: cos A — cosh 4
+ Replace sin by sinh:  sin 4 — sinh 4
However ...

+ replace any product (or implied product) of two sin terms by minus the product of two sinh terms:

e.g. sinAsin B — —sinh 4 sinh B
This is the implied product of two sin terms because

tan® 4 — —tanh® 4 sin2 A
tan4 =

cos® A
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Example @

Write down the hyperbolic identity corresponding to:
tan A4 —tan B
| +tan A4 tan B

a cos24=2cos24-1 b tan(A4 - B) =

a cosh2A = 2cosh?A -1
Implied product of two sin terms because
tanh A — tanh B

b tanh(A«B)E1 sin 4 sin B

— tanh A tanh B tan Atan B =
Example @

cos A cos B
Given that sinh x = % find the exact value of:

a coshx b tanh x ¢ sinh2x

a Using cosh®x — sinhx =1,

cosh? x - % =1= coshx = ::"_(;:
Rk 2 coshx =1,socoshx = -% is not possible.
b Using tanhx = sinh X

cosh x

¢ Using sinh 2x = 2 sinhx coshx,

i . 3,35 _15
sith2x=2 XS X3=3

You can solve equations involving hyperbolic functions.

Solve 6sinh x — 2 cosh x = 7 for real values of x.

——— e There is no hyperbolic identity that will easily
’3( . _2 8*) - 2( e—;‘ Q") =7 transform the equation into an equation in just one
hyperbolic function, so use the basic definitions.

e~ 3Be*—gf¥-e*=7
2ef—7 —4e*=0
2e?¥ - T7e*-4=0
(2e* + )(e* - 4) =0

ef=-3e'=4
et = 4 There are no real values of x for which e* = -1
x=1n4
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Solve 2 cosh? x — 5sinh x = 5, giving your answers as natural logarithms.

Use this identity to transform the equation into
an equation in just one hyperbolic function.

Using cosh?x — sink?x = 1,
2(1 + sinh2x) = 5sinhx =5
2sinh?x — 5sinhx -3 =0
(2sinhx + N)(sinhx = 3)=0

1
So sinhx = ~75 or sinhx =23
Then, ,
X = arsinh (—-2) orx = arsinh 3
1 ; — ) ——
= x= In(—lg g+ 1) orx =13 +vo +1) Use arsinh x = In(x + Va2 + 1).
=S —~
= x:ln(—%qug) orx = In3 +v10)

Solve cosh 2x — Scosh x + 4 = 0, giving your answers as natural logarithms where appropriate.

Use this identity to transform the equation into

Using cosh 2x = 2 cosh® x — 1, e , .
an equation in just one hyperbolic function.

2coshix —1-5coshx+4=0
2cosh?x - S5coshx + 3 =0
(2 coshx — 3coshx = 1) =0

You can use arcosh x = In(x + Vx2 - 1), but

So coshx = % or coshx =1
remember that both In(x +/x2=1) and

= X = In(g + \j - 1) or x =0 In(x —Vx2=1) are possible.
5 . 5 For any value of k greater than 1, cosh x = k will
= X =n (5 + ?) orx=0 give two values of x, one positive and one negative.

Exercise @

1 Prove the following identities, using the definitions of sinh x and cosh x.

a sinh2A4 = 2sinh 4 cosh A b cosh (A - B) = cosh 4 cosh B - sinh A4 sinh B
¢ cosh34 =4cosh? A -3cosh 4 d sinh A - sinh B = 2sinh (é%ﬁ) cosh(A ; B)

2 Use Osborn’s rule to write down the hyperbolic identities corresponding to the following
trigonometric identities.

a sin(A4 - B)=sinAcos B-cosAsinB b sin34=3sinA-4sin* A4
- A+B) A—B) _1-tan’4
c cosA+cosB_2cos( 7 COS(__E d cosZA_——1+tan2A

e cos2A =cos* A —sin* 4
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Hyperbolic functions

3 Given that cosh x = 2, find the exact values of:

a sinhx b tanh x ¢ cosh2x

4 Given that sinh x = -1, find the exact values of:

a coshx b sinh2x ¢ tanh2x

5 Solve the following equations, giving your answers as natural logarithms.
a 3sinhx+4coshx=4 b 7sinhx -5coshx=1 ¢ 30coshx =15+ 26sinhx
d 13sinhx-7coshx+1=0 e cosh2x—-S5sinhx=13 f 3sinh?’x-13coshx+7=0

g sinh2x — 7sinhx =0 h 4coshx + 13e* =11 i 2tanhx=coshx

@ 6 a Starting from the definitions of sinh x and cosh x in terms of exponentials, prove that
cosh2x =2cosh’x -1 (3 marks)

b Solve the equation
cosh2x — 3 coshx =8
giving your answers as exact logarithms. (5 marks)

® 7 Solve the equation
2sinh?x - 5coshx =5

giving your answer in terms of natural logarithms in simplest form. (6 marks)

® 8 Joshua is asked to prove the following identity:
1 + tanh? x

| tanhZr= 2cosh?x -1
His answer is below.
1 t :z::z: =3 iegz;:a = (using sech 2x = 1 + tanh?x: same identity as the trig one)
= 556; L 3 1 (splitting the fraction up and cancelling)
= 2 1 (taking the reciprocal of both terms)
sech?x

= 2cosh?x — 1

Joshua has made three errors. Explain the errors and provide a correct proof. (6 marks)
9 a Express 10coshx + 6sinh x in the form Rcosh (x + a) m Use the identity
where R > 0. Give the value of a correct to 3 for cosh (4 + B).
decimal places. (4 marks)
b Write down the minimum value of 10 cosh x + 6 sinh x. (1 mark)

¢ Use your answer to part a to solve the equation 10cosh x + 6sinh x = 11.
Give your answers to 3 decimal places. (4 marks)
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m Differentiating hyperbolic functions

You can differentiate hyperbolic functions.

] d (sinh x) = cosh x

dx
m The rules for sinh x and tanh x are the

] d (cosh x) = sinh x same as the corresponding rules for sin x and tan x.
dx However, the derivative of cosh x is positive sinh x.

.4 (tanh x) = sech? x
dx

Show that d

(cosh x) = sinh x.

coshx =< E-'?__- Use the definition of cosh x.
So -f%(cosh.'-:) = ad—\(&i\{_—ze-—\)
’ . Differentiate with respect to x:
B ¥ = g™ d
- 2 — @) =—e%
d.s:( )
ev —er _ .o
5 = sinh X L N
4 By definition.
So i ({cosh x) = sinh x
Example 0
Differentiate cosh 3x with respect to x.
d ; . . i
Jx (cosh 3x) = 3 sinh 3x Use the chain rule.

Differentiate x* cosh 4x with respect to x.

d » o
Tx (x=cosh4x) = T%

= 2xcosh4x + x2 x 4sinh 4x

(x2)cosh 4x + x? % (cosh 4x) Use the product rule.

= 2xcosh4x + 4x2sinh 4x
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Example @

: d3y
Given that y = 4 cosh 3x + Bsinh 3x, where 4 and B are constants, prove that — = 9y.
X
dy , : :
y i 3Asinh 3x + 3Bcosh 3x Differentiate y.
d?y , . . )
s 94 cosh 3x + 9Bsinh 3x Differentiate again.

= A cosh 3x + Bsinh 3x) L Factorise

=9y

-—— y=Acosh3x + Bsinh3x

You can also differentiate the inverse hyperbolic functions.

" o (arsinh x) = - -
dx Vxz+1

] d (arcosh x) = #, x>1
dx \."xz —

d _ 1
. E(artanh x) ={_ x| <1

x2’
Example @

dy
Given y = xarcosh x, find .
2 hx +x “ Use the product rul
dx =arcoshx + x X \_.-":\'2 = se the pI'D uct rule.
= arcoshx + —= ;}‘
vVxe =1

dy\~
Given y = (arcosh x)?, prove that (x> - 1) ( }) =4y,

2

dx
é‘ﬁ = 2arcosh x X ——— Use the chain rule.
dx N
= Vx2 -1 jl\ = 2arcoshx Multiply by Jat=1.
- (P 1}(%); = 4(arcosh x)° Square both sides.
But y = (arcosh x)?

2

; dy\”
50 (X° — T)(d—‘l\') =4y
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d y 1
a Show that — (arsinh x) = ——
d,x( ) V1 + x2

b Find the first two non-zero terms of the series expansion of arsinh x.

The general form for the series expansion of arsinh x is given by

| x ((=1)"(2n)!\ x2n+!
arsinh x = g( 221 ()2 ) 2n+1

¢ Find, in simplest terms, the coefficient of x°.

d Use your approximation up to and including the term in x° to find an approximate value for
arsinh0.5.

e Calculate the percentage error in using this approximation.

a lety =arsinhx
then sinhy = x

dx — Differentiate.

= hy
= gy = cosh)
= y/sinh? y + 1 Use cosh? x — sinh?x = 1.
But sinhy = x,
dx = ; ;
50 i VX2 + 1 Take the reciprocal of both sides.
dy 1 , A .
therefore — = : ~_ Find the second derivative using the chain rule or

quotient rule.
b f(x) = arsinhx = f(0) =0

1 UELOILTTS vou need to find the first two non-

W1 + x2 = 1= 1 zero terms. f(0) = 0 and f”(0) = 0 so there is no

constant term and no x? term. Differentiate again

Fil) =

] X " =
P = (1 + x2)3 = AR= to find the x3 term.
1 2x2 -1 o . " " " s v
F(x) = ﬁ = Q) = -1 Find the third derivative using the quotient rule.
+ x2)°
: 23 1
arsinhx =~ x — % =X - g.r?’ Use the standard Maclaurin series expansion.

& Chapter 2
¢ The x% term will be when n = 2:

(f—i)%!)ﬁ _Ax24 xE_ 3 Problem-solving

4 2 - o 5
EEAS  Temse" S e The general term contains (-1)” and a power
The coefficient of x3 is i) of x21+1 The non-zero terms will all have odd

40 : ;
_ 1 . powers of x and will alternate signs.
d arsinh0.5 &~ 0.5 — =(0.5)° + —(0.5)°
G 40
= 0.48151...
_0.48151... — arsinh0.5
e Yo error = Arorh 0.5 x 100

= 0.062% (3 d.p)
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Hyperbolic functions

1 Differentiate with respect to x:

a sinh 2x b coshSx ¢ tanh2x d sinh3x
thdx f h2x -¥ginh x
¢ cotay seci 2 g e7sinhx m For part e, use coth x = -
sinh x tanh x
h xcosh3x i i x2cosh3x 1
3x For part f, use sech2x =
cosh 2x
k sinh 2x cosh3x I In(cosh x) m sinh x* For part p, use cosech x = — 1
sinh x
n cosh?2x 0 gooshx p cosechx
@ 2 If y = acosh nx + bsinh nx, where a and b are constants, prove that d“ == ny. (4 marks)
x*
(E/P) 3 Find the exact coordinates of the stationary point on the curve with equation
y = 12cosh x — sinh x. (7 marks)
; ; d?y
@ 4 Given that y = cosh 3x sinh x, find ) (6 marks)
X
5 Differentiate:
a arcosh 2x b arsinh(x + 1) ¢ artanh 3x
d arsech x e arcosh x? f arcosh3x
g x2arcoshx h arsinh'zi i e“arsinhx
j arsinhx arcosh x k arcosh x sech x 1 xarcosh3x
® 6 Prove that:
d 1 d 1
— Y= KEozs s x) = L lx w2
a x (arcosh x) 77 x> 1 b dx (artanh x) 1 %<1
@ 7 Given that y = artanh (%i) prove that
dy
(4 - e¥)=—=2¢" (6 marks)
dx
® 8 Given that y = arsinh x, show that
547y dZy dy
(1+x%) e + 3x a2 - e 0 (7 marks)
dy
® 9 If y = (arcosh x)?, find P (6 marks)
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12

@ 10 Find the equation of the tangent at the point where x = {5 on the curve with equation
y = artanh x. (3 marks)

11 Show that the equation of the normal at the point where x = 2 on the curve with equation
y = arcosh 2x can be written as y = ax + b + Inc, where a, b and ¢ are exact real numbers to

be found. (5 marks)
12 a Find the first three non-zero terms of the Maclaurin series for cosh x. (5 marks)
b Hence find the percentage error when this approximation is used to evaluate cosh0.2.
(3 marks)
(E/P) 13 a Find the first three non-zero terms of the Maclaurin series for sinh x. (5 marks)
b Hence find an expression for the nth non-zero term of the Maclaurin series
for sinh x. (2 marks)
(E/P) 14 y =tanhx
a Use a Maclaurin series expansion to show that y ~ x — %x-‘. (5 marks)

b Find the percentage error when the approximation in a is used to evaluate tanh 0.8. (2 marks)

15 y=artanhx

a Show that the first three non-zero terms of the Maclaurin series of y are

ol _%x3 i .;_xs (6 marks)
b Hence write down the general term for the nth non-zero term in the series expansion. (1 mark)
¢ Find the first two non-zero terms of the series expansion of cosh x artanh x. (5 marks)

(E/P) 16 y = sinh x cosh 2x
Find the first three non-zero terms of the Maclaurin series for y, giving each coefficient in its

simplest form. (7 marks)
17 y =cosx coshx
dy

a Show that ﬁ =—4y. (4 marks)
b Hence find the first three non-zero terms of the Maclaurin series for y, giving each

coefficient in its simplest form. N (4 marks)
¢ Hence write the series expansion for y in the form > _f(r)x%, where f is function to be

determined. =0 (2 marks)

Challenge

Find the first three non-zero terms of the series expansion of sech x.
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@ Integrating hyperbolic functions

You can integrate hyperbolic functions.

= You should be familiar with the following integrals:

. fsinh xdx=coshx+c¢ since %(cosh Xx) =sinhx

. fcosh xdx=sinhx+c¢ since ag_;(sinh x) = cosh x

. 1 dx=arsinhx+c since -9 (arsinhy)=—1
1+ x2 dx v1+x?

-

. 1 dx=arcoshx+¢, x>1 since j-l—{arcosh X)=——
Va2 -1 dx Vxt-1

Find |cosh(4x - 1)dx.

fcoah (4x — )dx = Fsinh (4x = 1) + ¢

Find f
,;’,Cu
fg + 5% dy = f 5 g +f 5% dx Splitting the numerator gives two recognisable
VX® + 1 VX2 + 1 Va2 + 1 integrals.

l
= f dx + 5|x(1 + x2)2dx L This is the standard result for arsinh x.
v

x2 + 1
. e —F . . This integral is of the form kff ) (F(x))" dx.
= 2arsinhx + 5v1 + x° + ¢ « Pure Yeir 2, Ciaptar 9
DE]]E @

Find:
a fcosh'—‘ 2x sinh 2x dx b ftanh xdx
. 1 = ) ALY 4 — (f(x})’”’l
a fco:'jh5 2xsinh2xdx = gf(cosh 2x)7(2 sinh 2x) dx Use | (F(x))"f'(x) dx = ] =6

o L onanemer 4 5 with f(x) = cosh2x and n = 5.
-2 =
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b ﬁ:anh,\‘d.\': f sinhx gy Use ffi@dx=ln|f(x)| e
cosh x fx)

with f(x) = cosh x. Modulus signs are not

=Incoshx + ¢
necessary because cosh x > 0, for all x.

] ftanhxdx: Incoshx + ¢

Find the following integrals.

a f cosh?3xdx b [sinh?x dx
a fcoahi’ Bxdx= f“‘#‘mdx Use cosh24 = 2cosh? 4 — 1 with 4 = 3x.
_1f ., sinh&x !
= 2(.\ + 76 ) + ¢

1 1.
=ZX + Eamh ex +¢

sinh= x sinh x dx Problem-solving

For small odd values of n, you can use
fsinh" xdx= fsinh"*l xsinh x dx.

cosh? x sinh xdx - fsmh xdx cosh” x dx, for odd values of i, can be found
similarly.

b fs‘mha.\' di% =

(cosh®x = 1)sinh x dx

]

= —;-cosh3 x —coshx + ¢

Sometimes the exponential definition of a hyperbolic function can be used to find a given integral.

Find fel" sinh x d.x.

X _ e
fef-fsinh Xdx= fei'-"( = 5 = ) dx Use the definition of sinh x.
o ;Tﬁs_‘ﬁ.r pt 8") dx
-
= “—;( 63‘ - S'\') 3¢

= _i.{ﬁe.r - 3e¥) + ¢

You need to be able to use hyperbolic substitutions to find the integrals of expressions of the forms

1 __dx and ;d.x
/%2 — a2 VXE b0
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By using an appropriate substitution, find f —

As cosh®u — 1 = sinh®u, it follows that

a?cosh®u - a? = a®sinh?u

1
x2 - a?

Use the substitution x = acoshu,

ax . dasinh u
du ~

S0 dX can be

f_( 1 _gx=
VX2 — gf

= 1
fv’az cosh?u — a©

replaced by asinhu du.

asinhudu

I

i : d
fu-e-iﬂﬁumu !

u+c

| =

arcosh(") + ¢

o

dx = arsinh (%) +c

. f;
vad + x?
. f 1
VX2 —a?

Show that

dx = arcosh (%) +6,Xx>a

fg;dr—ln(z-l-ﬁ)
svVa2-16 2

[ar‘cosh(

B ] X118
fa Va2 —E .- ‘:})] 5

= arcosh 2 - arcosh[%)

@ + v3) - In(2 + /2
In2 + v3) -
2+ 3

= '”( 2\;3)

Hyperbolic functions

dx, x > a.

This is similar to using the substitution x = asinu

to integrate « Section 3.4

az_xz

X X
x =acoshu = coshu =Z = u= arcosh (E)

dx with ¢ = 4.

Use the result for f;
Vxe— g

Use arcosh x = In (x + Vx2 = 1).

Use lna—lnb:ln(%)

117



Example @

Show that fv I+ x2dx = garsinhx + 30/ + X2 + ¢

: dx
X =sinhu = = =coshu
clu

50 dx can be replaced by coshu du

fﬁ + x%dx = f\ﬂ + sinh® u cosh 1 du

fcoshz u du

= ;ﬁ1 + cosh 2u) du Use cosh 2u = 2 cosh?u - 1.
1 inh 2 1
= 8( u+ ?’-'--rl-z'—----’-’f) +¢ You need to be able to use x = sinh, so use

sinh 21 = 2 sinh u cosh w.
= %(u + sinhwcoshu) + ¢

e p=arsinh x and coshu = v1 + sinh? u.

= éarsmh.\' + -é—).'\-*1 + x2 +¢

§

-3
By using a hyperbolic substitution, evaluate — —dx.
y g a hyp o

Use the substitution x = 3 sinhu You need to reduce x* + 9 to a single term.
dx Using x = 3 sinh u gives

=== 3 h

du comnit 9sinh?u+9 =9 (sinh?u + 1) =9 cosh?u

So dx can be replaced by 3 coshudu

° X3 . f‘“rsi”"géj_%lﬂbﬁ_!!3 o When x = 6, sinhu =2 = u = arsinh 2.
2 ra "), Bcoshy 2k When x =0, sinh =0 = u=0.
rsinh2
= 27’f sinh® u du Use the method from Example 26.

arsinh2

1
= 27[ gc05h3 i —cosh u]

o

5\-":.5 f ( | (A=t =
= 27(—3— - u5)—27|§- — 1) ——— Assinhu=2, cosh u=v1+2%=15.

= 18V5 + 18
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Example @

Fmdf__J___dx
VI2x + 2x2

12X + 2x2 = 2(x2 + 6X) —‘
2(x+32-9) |

So ;;dx = [~ ! dx
V912x 4+ 2x2 Ve((x + 3)2 - 9)

let u=x+ 3, then du = dx Choose the substitution.

Complete the square,

S ST, By S S
Vi2x + 2x2 ve [ Vu?2 -9

= arcoah( -L-f-) +¢ +~——— Select the standard form.

Rewrite the answer in terms of x.

Use the substitution x = 3(3 + 4 cosh ) to find f I dx.
vVaxt-12x -7
X =53 + 4coshu) = %X = Lasinhu) = 2sinhu

50 dx can be replaced by 2 sinhudu

4x2 ~12x -7 = 4(%(3 + 4 cosh uJ)2 - 63 + 4coshu) =7
=9 + 24coshu + 16cosh®u — 186 - 24coshu - 7
=16 cosh?u — 16

= 16sinh?u Use cosh?u —sinh?u =1
1 1 .
S0 |— ex = - X 2sinhudu
Vax? —12x -7 4 sinh u

%fidu

=ik .
=SsU+C

As x = 3(3 + 4 cosh u),

1 2x =3 o
= —éarcosh( 4 ) + ¢ coshiu= (2.):4 3)
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1 Integrate the following with respect to x.

a sinh x + 3cosh x b coshx - — ¢ th;\—
cosh? x cosh? x
2 Find:
a fsinh 2xdx b fcosh( %)d %
3 Find:
a f_lizi_ dx b _1;3__ dx
vx2 =1 v1+ x?
4 Find:
a fsinh3 x coshxdx b [tanh4xdx ¢ f cosh 2x sinh 2xdx
5 Find:
a f sinhx 4y b f1+tanh,\d,c c fScoshx+2sinhxdx
2+ 3coshx cosh? cosh x

6 Use integration by parts to find fx sinh 3x dx.

7 Find:
a f e¥cosh xdx b f e 2¥sinh 3x dx C fcosh x cosh3xdx
1
8 Evaluate j; o p—— dx, giving your answer in terms of e.

9 Use appropriate identities to find:

a fsinhzxclx b fsinhzx cosh? xdx

e}

fcosh5 xdx

In2
® 10 Show that f cosh’ (%)d\ = —(‘% +1In16). (7 marks)

4]

11 Use suitable substitutions to find:

1 1
a dx b f_—d,x
f\fxl -9 v4x? + 25

12 Write down the results for the following:

3 1
a < dx b dx
f\/xi +9 Vx2-2
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13 Find:
a f__—l_.dx b f_l—.dx
4x2 - 12 VOx2 + 16

14 Evaluat
"““fm

15 Evaluate, giving your answers as a single natural logarithms.

I
o VX2+16 3v,x—]44
(® 16 Use the substitution x = sinhu to find ||/ 7 dx, x> 0. (6 marks)
ooy
17 By using the substitution u = x2, evaluate f =——dx 6 marks
® ¥ g 5 N ( )
@ 18 Use the substitution x = 2 cosh « to show that
fxfx? -4dx= %,wxl -4 -2 arcosh(%‘) +c (6 marks)
19 a Show that f L dxcan be written as f 2" _dx. (3 marks)
2coshx - sinh x e+ 3
b Hence, by using the substitution « = e, find f 1 i dx. (5 marks)
2cosh x = sinh x
20 Using the substitution v = %sinh x, evaluate Coshx (8 marks)
y v 4sinh?x + 9

@ 21 Find the following: Problem-solving

Complete the square in the denominator

1 | -
. fmdx b Im d to identify a suitable substitution.

1 3 1
1 1 (—dx-12 {(x-27- e

¢ | —=_dx d dx o )
2x2+4x+7 vVOx2-8x+1 substitution u = x — 2 will reduce the

integral in part a to a standard form.

@ 22 Find:

i f 1
Vax2-12x+ 10

dx dx

b f 1
4x2 - 12x+4

1
1
23 Evaluate | —————==dx
® L Vx2+2x+5
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3
24 Evaluate f %dx, giving your answer as a single natural logarithm. (8 marks)
PV x2-2x+
’ I I
25 Show thatf T 6r+7dx=ﬁln(2+\/§) (8 marks)
I X5 =00

(E/P) 26 The curves shown have equations
y=5coshxand y=7-sinhx.

a Using the definitions of sinh x and cosh x
in terms of e, find exact values for the
x-coordinates of the two points where
the curves intersect. (6 marks)

v =35cosh x

y=T-sinhx

b Use calculus to find the area of the
finite region, R, between the two curves, 0
giving your answer in the form Ina + b
where ¢ and b are integers. (6 marks)

-y

27 The region bounded by the curve y = sinh x, the line x = 1 and the positive x-axis is rotated
through 360° about the x-axis. Show that the volume of the solid of revolution formed is

m
8e?

Challenge

1 Using the substitution x = 1 + sinh #, show that

(e*—4e’-1) (5 marks)

f i dx = r= +¢
(x2—2x+2)§ VXxt-2x+2

2 By means of a suitable substitution, or otherwise,
find:

a fxcosha(xf-') dx b f =

cosh?(x?)

Mixed exercise o

1 Find the exact value of: a sinh(In3) b cosh(In5) ¢ tanh(In ;})
2 Given that artanh x — artanh y = In 5, find y in terms of Xx.

3 Using the definitions of sinh x and cosh x, prove that
sinh (A — B) = sinh 4 cosh B — cosh A sinh B (5 marks)
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Using definitions in terms of exponentials, prove that

£

) 2 tanh +x
sink e ———— (5 marks)
| - tanh?5x

@ 5 Solve, giving your answers as natural logarithms

9coshx - 5sinhx =15 (6 marks)
® 6 Solve, giving your answers as natural logarithms

23sinhx —17coshx+7=0 (6 marks)
® 7 Solve, giving your answers as natural logarithms

3cosh’x + I1sinhx =17 (6 marks)
® 8 a On the same diagram, sketch the graphs of y = 6 + sinh x and y = sinh 3x. (2 marks)

b Using the identity sinh 3x = 3 sinh x + 4 sinh? x, show that the graphs intersect where
sinh x = 1 and hence find the exact coordinates of the point of intersection. (5 marks)

Given that 13 cosh x + 5sinh x = Rcosh (x + @), R > 0, use the identity
cosh (4 + B) = cosh 4 cosh B + sinh A sinh B to find the values of R and «, giving the
value of « to 3 decimal places. (4 marks)

k=]
-]

b Write down the minimum value of 13 cosh x + 5sinh x. (1 mark)

10 a Express 3 cosh x + 5sinh x in the form Rsinh (x + ), where R > 0. Give a to 3 decimal

places. (4 marks)
b Use the answer to part a to solve the equation 3 cosh x + 5sinh x = 8, giving your

answer to 2 decimal places. (3 marks)
¢ Solve 3 cosh x + 5sinh x = 8 by using the definitions of cosh x and sinh x. (4 marks)

) . dy
11 Given y = cosh 2x, find T

12 Differentiate with respect to x:

; ; 5 X
a arsinh 3x b arsinh (x?) ¢ arcoshj d x?arcosh2x

@ 13 Given that y = (arsinh x)?, prove that

d?y dy
(1+ xE)d;; + \H% -2=0 (5 marks)

14 Given that f(x) = 5 cosh x — 3 sinh x, find:

a f'(x) (2 marks)
b the turning point on the curve y = f(x) (4 marks)
@ 15 Differentiate arcosh (sinh 2x). (4 marks)

143



Chapter 6

16 y =sinx coshx

d4x
a Show that d_}“ =—4y. (4 marks)
b Hence find the first three non-zero terms of the Maclaurin series for y, giving each coefficient
in its simplest form. (4 marks)

17 y =sinh 2x cosh x

Find the first three non-zero terms of the Maclaurin series for y, giving each coefficient in its
simplest form. (7 marks)

18 4x2+4x+17=(ax+ by +c,a> 0.

a Find the values of @, b and c. (3 marks)

b Find the exact value of I 1 mdx (6 marks)
19 Find the following:

a fsinh 4x cosh 6xdx b [e“sinhxdx

20 The diagram shows the cross-section R of an artificial ski slope.

YA

~Y

(0]

The slope is modelled by the curve with equation

_.L,_ {;{5

u = X =
vax2+9

Given that 1 unit on each axis represents 10 metres, use integration to calculate the area of R.

) —

Show your method clearly and give your answer to 2 significant figures. (6 marks)
@ 21 Find f#dx (7 marks)
VX2 -2x+10
; 1 )
(E/P) 22 a Find fsinhx  Jooshx dx (6 marks)
-
3 = O(/F :
b Show that P v dx =9(v2 - 1) + 2arsinh 1 (6 marks)
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23 The diagram shows a hanging chain fixed to two vertical bollards fixed YA
on horizontal ground 7 metres apart.

X

3

a Find the acute angle that the chain makes with the right-hand
bollard. Give your answer to 3 significant figures. (5 marks) -3

The chain is modelled by the curve y = cosh

o

b Use calculus to find, correct to 2 decimal places, the area of the finite
region, R, enclosed by the bollards, the chain and the ground. (5 marks)

® 24 The curves shown have equations y = 3 cosh 2x YA

and y=8+ sinh 2x. =8 +sinh 2x

a Using the definitions of sinh x and cosh x in terms of
e*, find exact values for the x-coordinates of the two
points where the curves intersect. (6 marks) = /y=3cosh2x

b Use calculus to find the area of the finite region, R,
between the two curves, giving your answer correct to

3 significant figures. (6 marks)

=Y

25 The diagram shows the cross-section of a loaf of bread. VA

Each unit on the axes represents 5 cm. The curved top of the loaf
is modelled using the equation
5 |

R
Vx2+4

=¥

Given that the loaf can be modelled as a prism, with length 30 cm, find,
correct to 3 significant figures, the volume of the loaf. (8 marks)

@ 26 The diagram shows the curve y = 3 — sinh x. VA

a Find the exact coordinates of the point where the curve
crosses the x-axis. (3 marks)

The shaded area is bounded by the curve, the y-axis and

the x-axis. . y=3=sinhx

b Find the volume of the solid of revolution formed when
the shaded area is rotated through 360° about the x-axis.

Give your answer correct to 3 significant figures. 0 \ &
(8 marks)

Challenge

The diagram shows the graph of
y=sechx.

Show that the area bounded by the =
curve and the x-axis is m.
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Summary of key points

1 - Hyperbolic sine (or sinh) is defined as sinh x = &=

JXER

+ Hyperbolic cosine (or cosh) is defined as cosh x = e e

THER

_sinhx _ e*=1

» Hyperbolic t t (or tanh) is defined as tanh x = =
yperbolic tangent (or tanh) is defined as tanh x A

JXER

2 + The graph of y = sinh x: « The graph of y = cosh x:

YA y=sinhx YA

y=cosh x

=Y

For any value ¢, sinh (-a) = —sinh a. For any value ¢, cosh (—a) = cosha.

3 The table shows the inverse hyperbolic functions, with domains restricted where necessary.

Hyperbolic function | Inverse hyperbolic function
y=sinhx y=arsinh x
y=coshx,x=0 y=arcoshx, x=1
y=tanhx y=artanhy, [x| <1
4 - arsinhx=In(x+vVx2+1) « arcoshx=Ilnlx+vVx¥=1),x=1 - artanh.rz%ln( % t;) x| <1
5 cosh?A4-sinhc4=1
6 -+ sinh (A4 + B) = sinh 4 cosh B + cosh A sinh B
« cosh(A4 + B) = cosh A4 cosh B =+ sinh A sinh B
o O piian o = : . d o = sl . d Rty
7 = (sinh x) = cosh x = (cosh x) = sinh x E (tanh x) = sech? x
e | . d o 1 . d _ 1
p (arsinh x) = = e (arcosh x) = o T (artanh x) = T
8 - fsinhxdx:coshx+c . fcoshxdx:sinhx+c
9 ftanhxdx: Incosh x + ¢

1
10 -
fv aé + x°
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Methods in

differential equations

After completing this chapter you should be able to:

e Solve first-order differential equations using an integrating
factor -» pages 148-153

® Solve second-order homogeneous differential equations
using the auxiliary equation - pages 153-157

® Solve second-order non-homogeneous differential equations
using the complimentary function and the particular integral
-» pages 157-162

e Find particular solutions to differential equations using given
boundary conditions - pages 162-165

Prior knowledge check

1 Find the general solution to the differential
dv

equation d—} = Xe*. < Pure Year 2, Chapter 11

X

Find the particular solution to the

dy )
differential equation a— = —l;; given that
X v

Population growth can be modelled by a y=0whenx=2. < PureYear2, Chapter11 [EES

differential equation. For example, the rate &
of change of the population of bacteriain ¥ Find:
a petri dish is proportional to the number | 3 f
' of bacteria present, subject to the limiting 50
factor of the amount of space on the dish. b [tan4xdx ¢ Pure Year 2, Chapter 11

. P - _ L W i,
A " i =

3
dt
— 21




Chapter 7

m First-order differential equations

If a first-order differential equation can be

d ; :
written in the form L f(x)g(»), then you can m This process is called separating the

dx variables. ¢ Pure Year 2, Section 11.10
solve it by writing fglo—jdy = [f(x)dx.

Find the general solution to the differential equation
dp vy

dx =~ X

and sketch members of the family of solution curves represented by the general solution.

f%dp = *f%dx Separate the variables and integrate.
Inly| = =In|x| + ¢

g Collect the In terms together and combine using
In|y| + In|x| = ¢ :

the laws of logarithms.
In|xy| = ¢
|xy| = e Problem-solving
Fe ;

y ==, where 4 = e If ¢ is a constant of integration, then 4 = e¢ can
Some solution curves corresponding to also be used as a constant. Writing the equation
different values of A are shown below. in this form helps you determine the family of

solution curves.

o

The graphs of y = :l:f;?- form the family of solution

curves for this differential equation.

m Explore families of solution curves O

using GeoGebra.

In this chapter, you will consider differential equations which cannot be solved by separating
variables. The following example uses the product rule ‘in reverse’ to obtain a solution.
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Methods in differential equations
Example e

Find the general solution to the differential equation

YV ;
xX=—+ 3xty =sinx

dx You can use the product rule

_dy . “gv l'g—:-dc.ix(uv), withu=x*andv=y, to
X3== + 3x%p = sinx .
o recognise that x*— + 3x%y = —{¥3y}

dx

G opaman
So d_\:{l y) = sinx

Use integration as the inverse process of
differentiation.

= x?y = [sinxdx

=-—cosX+¢ L
5 N o Tl Integrate each side of the equation, including an
T arbitrary constant on the right-hand side.
One side of the differential equation in the Make y the subject by dividing each of the terms
example above is an exact derivative of a on the right-hand side by .

product in the form

E iy ;——d— )y
f(:«)dt +f'x)y= dx(f(.x),l}

a

You can solve some first-order differential equations by turning them into equations of this form.

Consider the differential equation

dy L3P _sinx

dx \ X x3
The left-hand side is not a derivative of a product but if you multiply both sides by x* then the
equation becomes the same as that in Example 2:

x3¥ +3x2p = sinx w x?is called an integrating factor.
X
In general, if you can write a linear first-order differential equation in the form

Y im0

— + b - ) — "

d.k‘ XV X

where P(x) and Q(x) are functions of x, and the function P(x) can be integrated, then it is possible to
find an integrating factor which will convert the left-hand side of the equation into an exact derivative
of a product. Suppose that the integrating factor has the form f(x), then

dv
f(x) d—i + f(x)P(x)y = f(x)Q(x) Multiply the equation by the integrating factor f(x).
In order for the left-hand side to be the derivative of the product f(x)y it must have the form

dy
f{\)— + f'(x)y. You can see that f(x)P(x) must be equal to f'(x), so:
fﬂ—?dx = fP(x}d.x Divide both sides by f(x) and integrate.
= In[f(x)| = [P(x)dx

= fx)=e [P(x)dx
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Chapter 7

Multiplying every term in the original differential equation by this integrating factor,
EIJ'P{.\-)d.\-gJ_: + @ /Pvdx P(x) p = e-f‘P{-"Jd-“Q(x)
X

" % (e /Pwdx y} = e[PWAxQ(y)

You can use the ‘product rule in reverse’ on the LHS.

efPdx gy = j e /PR Q(x) dx The equation is now directly solvable
’ by integrating both sides.

Notice that the left-hand side is the integrating factor multiplied by y and the right-hand side is the
integral of the integrating factor multiplied by Q(x). This will always be the case.

= You can solve a first-order differential m You miay wilte down this Integrating
d
equation of the form d—y + P(x)y = Q(x) by factor without proof in your exam, but you must
i i x . ” show all the subsequent stages of your working
multiplying every term by the integrating clearly
factor e/P(dx, '

Example o

Find the general solution of the differential equation

dy
——-—4y=e" : : :
dx ° Find the integrating factor.
The integrating factor is e/P¥ = efi-4)dx = e”‘-fj Multiply each term by the integrating factor.
dy ’7
6—4.\' _"_- = 46—4.\' '1. - e.\'e—efl.\'
dx r Express the LHS as the derivative of a product.
dﬁ\: (8-4.\' }.J — 6-3\.\'
= T o Integrate to get the general solution.
= —_.13- e 4 ¢
Divide every term, including the constant, by the
So y = —-_.',-J-e-" + ceH i 5 Y

integrating factor to make y the subject.

When you have integrated and found the general solution, you can let the arbitrary constant take
different numerical values, thus generating particular solutions.

In some questions you will be given a boundary condition, such as y = 1 when x = 0. You can use this
to find the value of the constant. Different boundary conditions will give rise to different particular
solutions.

a Find the general solution of the differential equation cos x d_}" + 2y sinx = cos? x.
x

b Find the particular solution which satisfies the condition that y = 2 when x = 0.
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Methods in differential equations

® Blideiseuah sy soss Divide by cos x so that equation is in the form

dy
— 4+ 2yt = x 1 —— dy
7 ytanx = cos® (1) d_-+ P(x) = Q(x)
The integrating factor is *
6“’[1,11_6]? :J.I'IlJ'L_e I|1—,Pf1_6r1=-r\
sy Use properties of [n to simplify the integrating
dy ' factor.
sec?x g + 2ysec?xtanx = sec?x 5053
g%
So . (rsec?x) = cos x Multiply equation (1) by the integrating factor
- ysec?x = [cosxdx and simplify the right-hand side.
= ysec?x =sinx+c
= y = cos?x(sinx +¢) Integrate to get the general solution and multiply

) through by cos? x.
b 2 =cos*0(sin0 + ¢

—
¥ = cos?x(sinx + 2) is the required Substitute y=2and x = 0into the general
particular solution. solution to find c.

Exercise @

1 For each of the following differential equations, find the general solution and sketch the family
of solution curves.

% He 2x ax 7 @ You can solve all
dy 2y dy of these equations by

¢ 3= = d A= ? separating variables.
a dy i R

e T Cos x Ay yeotx, X<

2 Given that k is an arbitrary positive constant,
a show that y? + kx? = 9k is the general solution to the differential equation

dy —xy
= x| <
g A3

b find the particular solution, which passes through the point (2, 5)

¢ sketch the family of solution curves for k = 9, 9, 1 and include your particular solution in the
diagram.

3 Find the general solutions to these differential equations.

dy dy dy
e = . =X = _ a=X p =ya¥ =
A Xg o +p=00sX b e dy ~ €y =xe ¢ smAd +ycosx=3
1 d_V I X 2 rdy | d}'
U eV —— 4 2xeb = x Yy + 2p2 = x2
d = e el e el =+ 2xe) =x f 4xyd +2yr=x
d ’
@ 4 a Find the general solution to the differential equation A +2xy=e™ (4 marks)
b Describe the behaviour of y as x — oc. (1 mark)
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5 a Find the general solution to the differential equation

L 2 2x +1
W T2 =2x+

b Find the three particular solutions which pass through the points with coordinates
(-3, 0), (-—%, 3) and (—%, 19) respectively and sketch their solution curves for x < 0.

6 a Find the general solution to the differential equation
dy p 1

Xt s =G+ NG+ 2y

b Find the particular solution which passes through the point (2, 2).

b |

7 Find the general solutions to these differential equations by using an integrating factor.

a dx+ y=e I + ycotx =
dy P - COsx d dy 2x;

¢ g tysinx=e ks
dy ) ¢ dv ¥ 1

e dx+)tanx—xcos.x d1+« 2

d 3 dy

g .1'35%—x5.-'= Y'):_z,x>—2 h 3x5§+y=x

i ) W A

i (x+ )dx—_yﬁu- i Y te=
e : dy

® 8 Find y in terms of x given that x =e¥ and that y = 1 when x = 1. (8 marks)

dx

d
® 9 Solve the differential equation, giving y in terms of x, where x‘d—i -xy=1
andy=latx=1. (8 marks)

® 10 a Find the general solution to the differential equation

(.l.' + l) d_.l’ +2y=2(x2+ 1)

X/ dx
giving y in terms of x. (6 marks)
b Find the particular solution which satisfies the condition that y =1 at x = 1. (2 marks)

® 11 a Find the general solution to the differential equation

dy T T
e:os‘.:.xdx-+—y=1_1 -—2<x<2 (6 marks)
b Find the particular solution which satisfies the condition that y =2 at x = (. (2 marks)

12 Find the general solution to the differential equation Problem-solving

dy You can use the substitution y = 2coshu
—=xyy2-4 (5 marks) ) 1
dx to integrate

« Section 6.5

3

¥
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13 a Find the general solution to the differential equation

0y h 4 k
4y = Veoshx (4 marks)
b Find the particular solution which satisfies the condition that y = e when x = 0. (2 marks)

14 a Find the general solution to the differential equation

dy  ——

o v+ (4 marks)
b Sketch the family of solution curves. (3 marks)
® 15 a Find the general solution to the differential equation
dv

CoS X d_{c + ysinx =1 (6 marks)

b Find the particular solution such that y = 3 when x = 7. (2 marks)

¢ Show that the points (% l) and (3%, —1) lie on all possible solution curves. (3 marks)

: . . dy :
16 Find a general solution to the equation agct by =0 1n terms of @ and b. (6 marks)

@ Second-order homogeneous differential equations

A second-order differential equation contains second derivatives.

Find the general solution to the differential equation
d?y 0

=12x
-2
dx m The general solution to this second-

order differential equation needs two arbitrary

dy

B e s constants. If you wanted to find a particular
dx solution you would need to know two boundary
y=2x>+Ax+B conditions.

In this section you will look at techniques for solving linear differential equations that are of the form

d?y  dy
You sometimes see differential

—+b—+cy=0
Taxz T T
equations of this type written as
d?y dy

where a, b and ¢ are real constants. Equations

of this form (with 0 on the right-hand side) are

called second-order homogeneous differential ay" +by' + cy=0where y* = T and y'=-~
equations with constant coefficients.

dy
Using the techniques from the previous section, the general solution olfmd—J + by = 0is of the form
X

y = Ae* where k = _"f}- Notice that k is the solution to the equation ak + bh=0.

1583



Chapter 7

This suggests that an equation of the form y = Aef* might also be a solution of the second-order
d?y

%
differential equation ud—}g + hd; + ¢y = 0. But it cannot be the general solution, as it only contains
X X

one arbitrary constant. Since two constants are necessary for a second-order differential equation,
you can try a solution of the form y = Ae** + Be#*, where A and B are arbitrary constants and 4 and u
are constants to be determined.

s = Ale’* + Buek~
dx
EL'
— = 4)eiY + Bucenx
dx? 2

Substituting these into the differential equation gives
a(Al%e* + Bu?e) + b(Aie* + Buet) + c(Ae** + Bert) =0
aAr?e* + aBuler + bAAe* + bBue* + cAe* + ¢cBe* =0
Ae’ad® + bA + ¢) + Ber<(au® + buy + ¢) =0

This shows that the equation y = Ae** + Be#* will satisfy the original differential equation if both
A and u are solutions to the quadratic equation am? + bm + ¢ = 0.

The equation am?® + bm + ¢ =0 is called the auxiliary equation.

= The natures of the roots « and 3 of the auxiliary equation, am?® + bm + ¢ = 0 determine the

: . , . d%p o dy
general solution to the differential equationa— + h— + ¢y =0.

. . dx? dx
You need to consider three different cases:

» Case 1: b? > bac
The auxiliary equation has two distinct real roots o and 3. The general solution will be of
the form y = 4e®* + Be"”* where 4 and B are arbitrary constants.

« Case 2: h? = &ac
The auxiliary equation has one repeated root .. The general solution will be of the form
y = (4 + Bx)e“~ where A and B are arbitrary constants.

. . h2 : .
,(I:_:se - Ifl. < fanlinst L Case 3 is equivalent to y = Ae* + Be’
ALY R QU S TR e with complexa and 3. = Exercise 7B, Challenge

conjugate roots « and (3 equal to p + gi.

The general solution will be of the form m -
y =ers(4 cosqx + Bsingx) where A and B If the roots are purely imaginary (p = 0), the
are arbitrary constants general solution reduces to y = A cosgx + Bsingx

dy
a Find the general solution to the equation 2

P L AP
Ty T EY

dx?
b Verify that your answer to part a satisfies the equation.
W W | — Write down the auxiliary equation.
Pm+3)m+1N=0=m= —% orm=-—1

L Solve the auxiliary equation.

So the general solution is

iz Ae=3* + Be= where A and B are =1 |

arbitrary constants Write down the general solution.
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Methods in differential equations

b y=Aez + Be™

A . 5.3 = ]
= ~zAe 2" - Be
d“:l’: r fiAe:—':‘f-" i W Write down expressions for the first and second
d-\; ) 4 , derivatives.
2lzde 2+ Be?) ¢ Si-5dezt~ Be )
+ 3(;16'3-" + Be™)

Ae3 — %Ae—" + 3Ae3* - St ) " d2y dy 4t
+ 2Be-* — 5Be~x + 3Be~* ’_ upstitute your expressions 1or ——;, ——and y into

dx? dx
= 0 as required.

the differential equation, expand and simplify.
Example o

mojw

d? dy
Show that y = (4 + Bx)e*" satisfies the differential equation d;:i - 6?; +9y=0.
Let y = Ae3* + Bxe®x, then
dy ) )
d"\_ = 3A4e® + 3Bxe™* + Be™
d2y ) Differentiate the expression for p twice.
p —=04e™ + 2Bxe?* 4-3Be* 4+ 3Be¥ i g
X
- A 3 + B‘ -63.1' + B 3x
e i o Substitute into the left-hand side of the
d2y dy o a o differential equation and simplify to show that
TP By Moy = QdeT + 08Ty Bhe” the result is zero.

- 6(34e* + 3Bxe3* + Be¥)
+ 9(Ae3* + Bxe®) =0 @ The auxiliary equation m? — 6m + 9 = 0 has
a repeated root at m = 3 so the general solution

So y= (4 + Bx)e®" is a solution to the equation. s
is in the form you expect.

Example o
2

Find the general solution to the differential equation d)i; + Sﬁ + 16y =0.

mz +8m+16 =0 Write down the auxiliary equation.

m+4)2=0=m=-4

L Solve the auxiliary equation. In this case there is a
repeated root.

So the general solution is y = (4 + Bx)e .

d? d
Find the general solution to the differential equation d_j; - 6% + 34y =0.
ME=Cm4+34=0=m=3 +5i Write down the auxiliary equation and solve it

using the quadratic formula or by completing
the square. In this case there are two complex
conjugate roots.

So the general solution is
y=e*Acos5x + Bsin5x)
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Find the general solution to the differential equation

2

X
a2 + 16y = 0.

Write down the auxiliary equation and solve it.
In this case there are two purely imaginary roots.

m2+16=0= m==4i

So the general solution is
y = Acos4x + Bsin4x

This is in the form y = e?*(A4 cos gx + Bsin¢x)
with p = 0.

1 Find the general solution to each to the following differential equations.

a j:ﬂ+5%+6y=0 b 33—8%+12y=0
¢ jz+2%—15y=0 d 312—3%-2@:0
e ji’z+5%=0 f 333-&-?%-{—2}::0
g 433;—7%—2y=0 h lSiﬁ—?%—2y=0
2 Find the general solution to each of the following differential equations.

a jz+10%+25y=0 b%—-18g+81y=0
¢ :i'z+2%+y=0 d j?;— %+16y:0
e 16%+8%+y=0 £ 431*_‘;_ %J,y:o

g4g:i+20%+25y=0 h jz+2\f§%+3y=0

3 Find the general solution to each of the following differential equations.

244 2

a 5+ 25=0 b 5 +81y=0

¢ jz+y=0 d gjznﬁy:@

¢ jzwguv;z:o f 33_4%+5y=0
g %4—20%“09)):0 h %”—%”y:o
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Methods in differential equations

4 Find the general solution to each of the following differential equations.

dy dy dzy dy
X2 dx - dx2 * dx = lap=d)
d’y  dy d?y _ dy
¢ dx3+4a+l3y=0 d 16d —24d—+9v—0
9d1y 6dy E d?y dy =
-— = e e =
© a2 " Vax T dx? “dx
5 Given the differential equation (;H: + 2&% + 9x =0, where £ is a real constant,
a find the general solution to the differential equation in each of the following cases:
i [k]>3
k| < 3
i |k =3 (8 marks)

b In the case where k = 2,
i find the general solution
ii describe what happens to x as t — <. (4 marks)

® 6 Given that am? + bm + ¢ = 0 has equal roots m = «a, prove that y = (4 + Bx)e* is a solution

) dy
to the differential equation cr—} +b—+c=0.
dx? dx
® 7 Given that y = f(x) and y = g(x) are both solutions to the @ This result is known as the
d?y d rinciple of superposition.
second-order differential equation a ot bd—y +cy=0, ki il

prove that y = Af(x) + Bg(x), where 4 and B are real constants, is also a solution.

Challenge

Let @ and 3 be the roots of a real-valued quadratic equation, so
thata=p+igand 3=p—ig, p, ¢ € R. Show that it is possible to
choose 4, B € C such that Ae** + Be*~ can be written in the form
e’ (Ccosgx + Dsingx) where C and D are arbitrary real constants.

@ Second-order non-homogeneous differential equations

Second-order differential equations of the form ; : ;
You sometimes see differential

ai: " b? + oy =f() equations of this type written asdzy dy
dx X ay” + by’ + ¢y = f(x) where y" = e and y' = =
X

are non-homogeneous.

To solve an equation of this type you first find the general solution of the corresponding homogeneous
d2y dv
differential equation, Loy o bEJ— + ¢y =0.This is called the complementary function (C.F.).
X
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You then need to find a particular integral (P.L.), which is a function that satisfies the differential
equation. The form of the particular integral depends on the form of f(x).

This table provides some particular integrals to try.

Form of f(x) Form of particular integral
P A Use this form of the P.. for functions such as
P+ gx A+ Ux I 4xZorl-x2
p+qx +rxe A+ px + vxe —
peks Jek Use this form of the P.. for functions such as
pCoswx + qsinmx ACOS@X + usinwx —1 I sin2xor5cosa.

= A particular integral is a function which satisfies the original differential equation.

Find a particular integral of the differential equationéi

"J;_ W, 6y = f(x) when f(x) is:

X dx
a3 b 2x ¢ 3x2 d e* e 13sin3x
dy d2y N e
& Lot jred then = =Diond =% =i When f()\)‘— 3,_ which is constant, choose
dx dx? Pl.= 2, which is also constant.

=

dey dy
Substitute into — = 5— + 6y = 3:
dx dx g

x# Differentiate twice and substitute the

-5 ; O+ei=3 derivatives into the differential equation.
= 3= Fl
. S . 1
S0 a particular integral is 3 Solve equation to give the value of 4.
dy dy
b lety=Ax+pu then—=dand—=0
‘ dx dx?® When f(x) = 2x, which is a linear function of
d=y dy _
Substitute into d\:e - 561'1' +6y=2x: x, choose Pl = Ax + .

O-5x4d+6x+u=2x
= (6u — 5A) + 6ix = 2x

= 6u—-54=0 and Gl=2
-—->,l=_%: and ,[4'='%

Differentiate twice and substitute the
derivatives into the differential equation.

Equate the constant terms and the coefficients
of x to give simultaneous equations, which you
can solve to find A and .

]
1E

So a particular integral is %x o

c lety=Ax2 +ux+v

[ !—TJ!—

dy d?y
Then d'x- = 2Ax + u and _d{f? = 7] As f(x) = 3x%, which is a quadratic function of
' o dl x let PL=Ax? + pux + v.
Substitute into —5 — 5—— + 6y = 3x%:
dx? dx

24 = 5(24x + p) + G(AXZ + px + 1) = 3x2 i o
= (24 — 5 + 6v) + (6u — 104)x + 64x? = 3x° Equate the constant terms, the coefficients

of x and the coefficients of x? to give
= 20 -5u+6y=0,68—104=0and 6i=3 - . e
19 simultaneous equations, which you can solve

36 _ to find 4, w and v.
So a particular integral is %_\‘9 +ZX + —;Z

1 5
S Ad=g p=zandv=
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24y

dy d () = e* i i i i
PP s i 1 p As f(x) = e*, which is an exponential function
: dx dx? of x let PI. = Je®.

L)

d
Substitute into 3 .

Ae* — Ble* + Gle" = e

= 2let=e* _‘

= A= ; _ k) Equate coefficients of e* to find the value of 4.
So a particular integral is ze*

Sd']‘ g PR "
Ty TS mE

& L&t p=-Asindx+ ycos Bx As f(x) = 13 sin 3.x, which is a trigonometric

dy : .
o A g 3usin3x function of x let Pl = 4sin3x + g cos 3x, also

Then —
ax S : ¢ :
2 a similar '[T'igOﬂOl’T]ElflC function.

-2

d=y
and . — = -94sin3x — Sucos 3x
L dyy dy ,
Substitute into — — 5——+ 6y = 13 sin 3x:
ax® dx
=94sin3x — Qucos 3x - 5(3dcos 3x — 3usin3x)
+ 6(45in3x + pcos 3x) = 13sin3x
= (-4 + 15u + 61)sin3x +

(=9u — 154 + 6u)cos 3x = 13sin3x

= —91 + 154 + 64 =13 Srotil lvi
and —=9u — 154 + 6u = O ek

= A=-—randpu=2 Equate coefficients of sin 3.x and of cos 3x

50 a particular integral is —(lj sin 3x + écoe 3x and solve simultaneous equations.

d? d
= To find the general solution to the differential equation ad—': + bd_t + ¢y = f(x),
x :

dz
* Solve the corresponding homogeneous equation ad—'}; S bd—y + ¢y = 0 to find the
complementary function (C.F.) N N

* Choose an appropriate form for the particular integral (P.l.) and substitute into the
original equation to find the values of any coefficients.

* The general solutionis y = C.F. + P.l.

Find the general solution to the differential equation

dz.}} d}} _ 2 ) 3.
de SEE + 6y = f(x) when f(x) is:

a3 b 2x ¢ 32 d e* e 13sin3x

m=—-5m+6=0
m=-3)m-2=0=m=3 orm=2
Hence the complementary function is

Solve the auxiliary equation to find the
values of m.

y = Ae®¥ + Be® where A and B are arbitrary

constanta,
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The particular integrals were already found in
example 11 so the general solutions are:

a y=Ae3 + Be? + -_'J

b y=Ae> + Be® + 3x + —5

c y=Ae® + Be2r 4 Ix2 4+ 2x 4+ 12 The general solution is y = CF. + PL.
d y=Ae’ + Be®* + %e-"

e y=Ae** + Be?¥ ~ %Sm 3x + 3 cosi’: x

You need to be careful if the standard form of the particular integral contains terms which form part
of the complementary function. If this is the case, you need to modify your particular integral so that
no two terms in the general solution have the same form.

For example, this situation occurs when f(x) is of the form pe**, and k is one of the roots of the
auxiliary equation. In this case you can try a particular integral of the form, Axekx,

d3y dy
- 5=+ 6y=e*
d S TV E
As in Example 12, the complementary function is m The function 2e®* is part of the
p = Ae3* 4 Be2x, C.F. and satisfies the differential equation
E 2
The particular integral cannot be Ae?y, d_ = 5j_y + 6y = 0, 50 it cannot also satisfy
as this is part of the complementary function. g':z dx
y
9o let y = Axe?* = a2 Sd— + 6y = e,
dy _ ‘
Then —— = 2Axe®* + 1
dx
and
it = 4ixe®* + 21e?~ + 24e?* = 4Axe?~ + 4)e®* ; :
dx? ) Let the P.. be Axe* and differentiate,
L. e substitute and solve to find 4.
dxe dx *

4)xe?~ + 4)e2x — 5(2Axe?r + Ae?r) + Glve™ = e?¥
= —je?t = g2

= )‘ = -

So a particular integral is —xe?*,

The general solution is y = Ae®* + Be® — xe®*, —————— The general solution is y = C.F. + PL.

When one of the roots of the auxiliary equation is 0, the complementary function will contain a
constant term. If f(x) is a polynomial, you will need to multiply its particular integral by x to make
sure the P.. does not also contain a constant term.
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Methods in differential equations

Example

Find the general solution to the differential equation
Find the complementary function by putting

d>y .dy
3 }2 d::c 3 the right-hand side of the differential
il | equation equal to zero, and solving this new
= equation.
d=y dy

=o D —

First consider the equation

e = 2m=0 —‘ o ax — Write down and solve the auxiliary equation.

mim—-2)=0 ; ; ;

B Try to ﬁnd a parnuf{a.r mtegral..The right-
hand side of the original equation was 3,

So the complementary function is y = A4 + Be™" which was a constant and usually this would

The particular integral cannot be a constant, imply a constant P..

as this is part of the compiementary function, As the CF includes a constant term ‘A’ the

so let y = Ax. P.. cannot also be constant. A value of 4

Then o = A and dé}j =0Q would satisfy@— Zdy = 0 rather than

dx dx? , dx? dx
Substitute into e 2-d’" = 3: %" Zg_y =
dx? dx ' % &

0-24=3

3 Multiply the ‘expected’ PI. by x and try Ax
= A=—3 -

instead.

S0 a particular integral is L%x
— N
3 The general solution is y = C.F. + Pl

The general solution is y = 4 + Be?* — 5x.

Exercise @

1 Solve each of the following differential equations, giving the general solution.

@y Ay e d?y dy =
a CF+6(§+ 5}7—‘10 b a2 8 12'}-—361
d-y dy - d%v dy _
¢ atar =12 d pes + 2= i 15y =35
d’y  dy d~y d dy
e dx3 o +16y=8x+12 f dx- d + y=25c082x
3x i
g iy .,+81y 15e hd.x =sinx
. d¥y dy . . d* y dy
i ra i x4 =17 i i 2(—1— + 26y =¢*
@ 2 a Find a particular integral for the differential equation
s de 4 3x+2 6 mark:
oz g tA= x2-3x+ (6 marks)
b Hence find the general solution. (3 marks)
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3 y satisfies the differential equation

d?y 6d)-‘ 58 ]
dx?  dx o X TX¥
a Find the complementary function for this differential equation. (3 marks)

b Hence find a suitable particular integral and write down the m Try a particular integral
general solution to the differential equation. (7 marks) of the form Ax + px? + vx2.

4 Find the general solution to the differential equation

d?y  dy
2t 45 = 24x? (10 marks)
(E/P) 5 a Explain why Axe* is not a suitable form for the particular integral for the differential equation
(?;J; - 2(% +y=¢e* (2 marks)
b Find the value of 4 for which Ax%e* is a particular integral for the differential equation.

(5 marks)
¢ Hence find the general solution. (3 marks)
dzy  dy :

6 a7 + 48-; + 3y =kt + 5, where k is a constant and 7 > 0.
a Find the general solution to the differential equation in terms of k. (7 marks)

For large values of ¢, this general solution may be approximated by a linear function.
b Given that k = 6, find the equation of this linear function. (2 marks)

Challenge

Find the general solution of the differential equation

d2y
—— 4 y=5xe*
dx? 2

m Using boundary conditions

You can use given boundary conditions to find a particular solution to a second-order differential
equation. Since there are two arbitrary constants, you will need two boundary conditions to determine
the complete particular solution.

Find y in terms of x, given that

2

o

dy
—p=2e* and that—=0and y=0at x =0.

dx? dx
d?y
First consider the equation =)= 0.
5 dx Solve the auxiliary equation to find the
mes—1=0=m==l
, S . . values of m.
So the complementary function is y = Ae* + Be™.
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Methods in differential equations

The particular integral cannot be Ae*,
as this is part of the complementary function,
50 let y = Axer.

2

dy S d=y _ : :
Then — = Axe* + le* and —= = Axe¥ + le¥ + A&
dx dx?

d?y
Substitute into — — y = 2ex:
dx
AxeX + ie* + Ae* — Axe* = 2¢e*
= A=1
So a particular integral is xe*.
The general solution is
y = Ae* + Be™* + xe*
Sncey=0atx=0,0=4A+ B

dey
As Ae* satisfies — - y = 0, it cannot also
v
Z

satisfy e - y=2e*

Substitute the boundary condition, y =0 at x =

= A+ B=0
Differentiating y = 4de* + Be™ + xe* with respect
to x gives
dy
— = Ae*— Be™ 4"+ xe*
dx

dy
Sinceg' =Q0atx=0.0=4 =841
o

0, into the general solution to obtain an equation
relating 4 and B.

Substitute the second boundary condition,

d
_y= 0 at x =0, into the derivative of the

dx
.—j general solution, to obtain a second equation

relating 4 and B.

= A-B=-1
Solving the simultaneous equations gives
4= —l:. and B = %
Soy= f%e-" + %a‘-" + xe’ is the required solution.

Solve the two equations to find values for 4 and B.

Given that a particular integral is of the form 4sin 2¢, find the solution to the differential

gl

i : :
equation 12 + X = 3sin 2¢, for which x = 0 and =~
First consider the equation ch[? +x=0,

dx
dt

=1whent=0.

m? +1=0 = m=i
So, the complementary function is
x=Acost + Bsint.

The particular integral is Asin 21,
so let x = Asin 2.

» |- R
Then 2% = 24c0s 2t arid 2% = —4isin 21
dt di=
. , d*x ,
Substitute into a2 + x = 3sin2t:

—442in2t + Asin 21 = 3sin 21
= 1= -1

Solve the auxiliary equation to find the values of m.

m Normally you would need to try a

particular integral of the form Asin2r + pcos2¢
for this equation. However, in this case you are
told that there is a particular integral in the form
Asin2t.
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So a particular integral is —sin 21. Use general solution = complementary function +
The general solution is T patticylarinteriat

x=Acost + Bsint — sin2t

Sincex=0att=0,4=0.
Differentiating x = Bsint — sin 2t with
respect to [ gives

Substitute the initial condition, x =0at (=0, into
the general solution to obtain 4 =0.

%_Bcosr-Ecof:Er ) o A
Substitute the second initial condition, =—— =1 at
Since X =1at1=0,1=B-2 o
dt 1 =0, into the derivative of the general solution,
= B=3 to obtain a second equation leading to B = 3.

And so x = 3sint — sin 2t is the required
solution.

® 1 a Find the general solution to the differential equation

P 5 i gyt 5 mark
e + ix +6y=12 - (5 marks)
b Hence find the particular solution that satisfies y = 1 and T 0 when x = 0. (4 marks)
® 2 a Find the general solution to the differential equation
d’y dy
= 2= ] 202 (5 marks)
dx? " “dx dv
b Hence find the particular solution that satisfies y = 2 and a—l =6 when x =0. (5 marks)
2 :
® 3 Given that y =0 and i = lehen x =0, find the particular solution to the differential equation
9 B ety 10 mark
dx? Tdy T Uk
® 4 a Find the general solution to the differential equation
Iy
d_x}z + 9y = 16sinx (6 marks)
3 A
b Hence find the particular solution that satisfies y = 1 and d—i = 8 when x = 0. (6 marks)
® 5 a Find the general solution to the differential equation
d2y  dvy
4—— + 4% + Sy =sinx + 4cosx (6 marks)
dx?  dx d
b Hence find the particular solution that satisfies y = 0 and e 0 when x = 0. (6 marks)
6 a Find the general solution to the differential equation
dx dx
o 3«5 +2x=2t-3 (6 marks)
b Given that x = 1 when 7 =0, and x = 2 when ¢ = 1, find a particular solution of this
differential equation. (6 marks)
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® 7 Find the particular solution to the differential equation

"31" - 9x = 10sin1
that satisfies x = 2 and % =—1 when r=0. (10 marks)
8 a i Find the value of 4 for which y = Ar¢? is a particular solution to the differential equation
dx d_)‘ e 2t
T 4dr +4x = 3te
ii Hence find the general solution to the differential equation. (6 marks)
b Find the particular solution that satisfies x = 0 and % =1whent=0. (6 marks)
@ 9 Find the particular solution to the differential equation
d’x
25— +36x=18
de?
that satisfies x = 1 and 3—: = 0.6 when 1 = 0. (12 marks)
@ 10 a Find the general solution to the differential equation
d’x . dx
B oM T T
2 dr +2x=2t (6 marks)
b Hence find the particular solution that satisfies x = 1 and % =3 when=0. (6 marks)
11 a Find the general solution to the differential equation
dl}; 3d}: 5 362 7 k
T dx+ y = 3¢ ] (7 marks)
b Hence find the particular solution that satisfies y = 0, i =0 when x=0. (6 marks)
12 Solve the differential equation
d’y .
=+ 9y = sin3x
dx? dv
subject to the boundary conditions y = 0, d—“l =0 when x = 0. (14 marks)
d’x  _dx
ol — Na—i
EP) 13 3455, +6x=2
Given thatx:Oand%=2aH=0,
a find x in terms of 1. 55 (8 marks)
b Show that the maximum value of x is 5 and justify that this is a maximum. (7 marks)
@ 1 Find the general solution to the differential equation
dy o
=t tanx = 2secx
giving your answer in the form y = f(x). (7 marks)
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® 2 Find the general solution to the differential equation
dy
(1- xz)a+xy =5x -=-l1<x<lI
giving your answer in the form y = f(x). (7 marks)

® 3 Find the general solution to the differential equation

dy B
X% +x+y=0
giving your answer in the form y = f(x). (7 marks)

® 4 y satisfies the differential equation

dy y
—+==x
dx + . VX
Find y as a function of x. (7 marks)

® 5 v satisfies the differential equation

dy 5
= +2xpy =X
Find y in terms of x. (7 marks)

n ¢ general solution to the difterential equation
(E/P) 6 Find the general soluti he differential equati
d
x(1 - xz)d—{j+ (2x2-1)p=2x, 0<x<1

giving your answer in the form y = f(x). (7 marks)

dy
7 Find the general solution to the equation —— — ay = Q(x), where « is a constant, giving your

2 : dx
answer in terms of a, when
a Q(x) = ke™ (k and 4 are constants). (6 marks)
Given that Q(x) = kx"e%, where k and n are constants,

b find the general solution to the differential equation. (7 marks)

(E/P) 8 Find, in the form y = f(x), the general solution to the differential equation

]

T

tanxa +y=2cosxtanx, 0 < x < D (6 marks)
® 9 a Find the general solution to the differential equation
dy . T L
-&;+ytan,\ =¢evCos X, ——2— SEx= 5
giving your answer in the form y = f(x). (6 marks)
b Find the particular solution for which y =1 at x = . (3 marks)
® 10 8 sy
T
Given that y = 0 when x =0, find y in terms of x. (7 marks)
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11 a Find the general solution to the differential equation

dy
3= P sinh x (4 marks)
b Find the particular solution which satisfies the condition that y = 1 when x = 0. (2 marks)
dy .
® 12 3, = *@4-9
Given that y = 1 when x =0, find y in terms of x. (7 marks)
. . - . . d¥y dy
® 13 Find the general solution to the differential equatio Tz T T 0 (6 marks)
2
@ 14 Find the general solution to the differential equation ;IT— 123% +36y=0 (6 marks)
@ 15 Find the general solution to the differential equation d-}: 45%; =0 (6 marks)
(E/P) 16 Find y in terms of k and x, given tha‘[éi S+ k?y = 0 where k is a constant, and y = 1
dy .
and = Latx=0. (8 marks)
® 17 :"” 23"" +10y = 0 for which y = 0
and 3— =3atx=0. (8 marks)
X
® 18 a Find the value of k for which y = ke?* is a particular integral of the differential equation
W a2 i 4 mark
rye e dx+ y=e (4 marks)

b Using your answer to part a, find the general solution to the differential equation. (5 marks)

(E/P) 19 Find the general solution of the differential equation

d“.lf
. fex (7 marks)
(E/P) 20 ;hj ;I—V +4y =4e>" is to be solved.
a Find the complementary function. (3 marks)

b Explain why neither ie?* nor Axe* can be a particular integral for this equation. (2 marks)

A particular integral has the form kx7%e*.

¢ Determine the value of the constant & and find the general solution of the
equation. (6 marks)

21 Find the particular solution of the differential equation
d?y
de?

d '
which satisfies the initial conditions that when 1 =0, y = 1 and EJ?/ = 2, (12 marks)
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® 22 a Find the values of 4, 4 and k such that y = A + yx + kxe>" is a particular integral of the
differential equation

. . S——" 5 mark
Av d.r+ v=4x+e (5 marks)
b Using your answer to part a, find the general solution of the differential equation. (5 marks)
d’y dy
23 a Find the solution of the differential equation lﬁdr)l + Sd_)x + 5y =5x+ 23 for whichy =3
q 2 :
and % =3atx=0. (8 marks)
b Show that y = x + 3 for large values of .. (2 marks)
d?y d
24 Find the solution of the differential equation d\{-’ - a% - 6y = 3 sin 3x - 2 cos 3x for which
y =1 at x = 0 and for which y remains finite as x — o<. (8 marks)
25 x satisfies the differential equation
d*x ..d% o
e +8dr + 16x=cosdr,t =0
a Find the general solution of the differential equation. (8 marks)

b Find the particular solution of this differential equation for which, at t =0, x = %

and % =0. (5 marks)

¢ Describe the behaviour of the function for large values of f. (2 marks)

Challenge

1 Use the substitution z = y? to transform the differential equation

dy 1
1o e =—
2(1 + x2) dx+2xy ¥

into a differential equation in z and x. By first solving the transformed equation,
a find the general solution of the original equation, giving y in terms of x.

b Find the particular solution for which y = 2 when x = 0.

2 a Find the general solution of the differential equation
dy  dy
P—— + hx—+ 2y =lnx, >0,
X i .hdx ¥ X X
using the substitution x = e, where u is a function of x.
b Find the equation of the solution curve passing through the point (1, 1) with
gradient 1.
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Methods in differential equations
Summary of key points

d
1 You can solve a first-order differential equation of the form al + P(x)y = Q(x) by multiplying
every term by the integrating factor e/Pdx,

2 The natures of the roots a and 3 of the auxiliary equation determine the general solution
d? d
to the second-order differential equation ad—': + bIJ\: +¢=0.
You need to consider three different cases:

« Case 1: b2 > bac

The auxiliary equation has two real roots « and 3 (e # ). The general solution will be of the
form y = Ae** + Be/* where 4 and B are arbitrary constants.

« Case 2: b2 = bac

The auxiliary equation has one repeated root a.. The general solution will be of the form
= (A + Bx)e“* where 4 and B are arbitrary constants.

« Case 3: b2 < bac

The auxiliary equation has two complex conjugate roots o and 3 equal to p + ¢i. The
general solution will be of the form y = e”*(A4 cosgx + Bsingx) where A and B are arbitrary
constants.

3 A particular integral is a function which satisfies the original differential equation.
d?
4 To find the general solution to the differential equation 4 J; + bd—i + ¢y = f(x),
d?y dy
+ Solve the corresponding homogeneous equation ad— + bd— + ¢y =0to find the
complementary function, C.F =
+ Choose an appropriate form for the particular integral, P1., and substitute into the original

equation to find the values of any coefficients.
« The general solution is y = C.F. + Pl
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Modelling with
differential equations

After completing this chapter you should be able to:

e Model real-life situations with first-order differential equations

->» pages 171-175

® Use differential equations to model simple harmonic motion

=» pages 175-180

® Model damped and forced oscillations using differential

equations

-» pages 180-186

® Model real-life situations using coupled first-order differential

equations

Prior knowledge check

1 Find the particular solution to the
: : _dy y
differential equation 5= 40 — 0+ x

given that y=0when x=0. « Section7.1

2 Find the general solution to the differential
. dy  dy

equation——+5—-6x=0 « Section7.2
dx?  dx

3 Find the particular solution to the
differential equation
dzy _dy
T - Zd_x + 2y =10 cosx
dy

0and y =0when x=0.
dx

« Sections 7.3, 7.4

WY

given that

—» pages 186-190

1

Population levels of predators and their
prey can be modelled using a pair of
coupled first-order differential equations.

—» Mixed exercise Q16




Modelling with differential equations

m Modelling with first-order differential equations

First-order differential equations can be used to model problems in kinematics. You have covered
some of these contexts in A level mathematics and you have learned the following relationships
between displacement, velocity and acceleration:
ds dv
V= — o= ——
dt dt
where s is the displacement of a particle, v is the velocity and « is the acceleration at time .

o

You can use these relationships to construct first-order differential equations which you can
solve using the standard methods of direct integration and separation of variables from A level
mathematics, or the method of integrating factors covered in Chapter 7 of this book.

A particle P starts from rest at a point O and moves along a straight line. At time ¢ seconds the
acceleration, ams=2, of P is given by

a= t=10

(t+2)¥

a Find the velocity of P at time ¢ seconds.

b Show that the displacement of P from O when ¢ =61is (18 — 12In2) m.

dr 6 Write the given relationship as a first-order
dat (1t + 2)° differential equation.

6 £
1’=f{r+2}2d!=fé;(f+ 2)=dt

Gt + 2)! —
p= — + ¢

Integrate both sides with respect to ¢. Notice that
this equation can be solved by direct integration.

=
S ey o L Remember to include the constant of integration.
When t =0, v = O:
OQ=c¢- g =¢=3 Use the initial conditions to find the value of c.
The velocity of P at time t seconds is
6 | . y :
(3 = -2-) ms™, Set up another first-order differential equation
: v
: using ===
bfj_“_=3___g_' ’7 gd!
di [+ 2
| 6 . ) . - - . -
§= (3 T 2) dt Solve this differential equation, again using
=3t-6In(t+2)+d L standard methods, and include a second constant
Vit =G =0 of integration. You are told that the particle starts
O=-6n2+d=>d=6In2 from rest at the origin so your initial conditions

$=3t—BInit+2)+ Eh2 ares=0whenr=0.
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When 4= & Use the laws of logarithms to simplify your
18 -CInd +6lIn2 answer into the form asked for in the question.
This can be done in more than one way. The

s

=18-6In(3)=18-6In4 working shown here uses
=18 -12In2 In8-In2=In(3)=In4
The displacement of P from O when t = & and
is (18 = 12In2) m, as required. In4=n22=21In2.

A particle P is moving along a straight line. At time ¢ seconds, the acceleration of the particle is
given by
3
a=t+ nt= 0
Given that v = 0 when ¢ = 2, show that the velocity of the particle at time ¢ is given by the equation
v=oct3-12

where ¢ is a constant to be found.

Ay & Write the differential equation in the form
el R | %{ + Pv = Q where P and Q are functions of ¢.
Integrating factor = e/Pdt = el -7 To solve this differential equation, you need to
= e~ use the integrating factor method. < Section 7.1
= g™
=1 Find the integrating factor and use the standard
So the original equation becomes method to find the general solution.
cv 2
=327 _ -y g2
B 3tv=t
d, . .,
= A%y =¢c
e
=2 3y ==t~ 4 ¢
S v=—t2+¢r3 Multiply through by # to find v.

Since v =0 when { = 2,
O=-4+8c=c=7%
So the velocity of the particle at time { is

given by v = %F‘ - 12
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First-order differential equations can also be used to model other real-life situations involving rates
of change.

You might need to construct or analyse models based on situations other than kinematics in your exam.

A storage tank initially contains 1000 litres of pure water. Liquid is removed from the tank at a
constant rate of 30 litres per hour and a chemical solution is added to the tank at a constant rate of
40 litres per hour. The chemical solution contains 4 grams of copper sulphate per litre of water.

Given that there are x grams of copper sulphate in the tank after ¢ hours and that the copper
sulphate immediately disperses throughout the tank on entry,

a show that the situation can be modelled by the differential equation
dx 3x
Q=10 -0 4 1=

b Hence find the number of grams of copper sulphate in the tank after 6 hours.

¢ Explain how the model could be refined.

a Llitres of liquid in the tank after f hours is given by
1000 + 40t — 30t = 1000 + 10t
Let x grams be the amount of copper sulphate in

Write down the amount of liquid in the
tank after ¢ hours.

Problem-solving

the tank after t hours.

Corncentration of copper sulphate after t hours
= m grams per litre.

Rate copper sulphate in = 40 X 4

= 160 grams per hour
x

Rate copper sulphate out = 30 X 500 1 101

= —37\ rams per hour
: 4y 10041 grams p
x s

h —-=1 -
eSS = 1Y <50 &1
dx 3
— X ]
PR EE LA ,
Integrating factor = el = e-flﬁéﬂ df

= @3In(100+)

- 6||'1:'IS\'3‘+JJ"

= (100 + 1)3

So the original equation becomes

(100 + r)-’J% + 3(100 + 1)2x = 160(100 + 1)?

= %{ﬁoo + 0)%x) = 160(100 + 1)

o (100 + )3 x = 40(100 + ) + ¢
Whent =0, x =0,

O =4000000000+¢c=c=-4 X 10!?1

After & hours,
(106)3x = 40 X (106)* - 4 x 10?
= X =682 q (3 s.f)

Work out the rate that copper sulphate
enters the tank and leaves it. The rate at
which the copper sulphate leaves the tank
will be dependent on the concentration of
copper sulphate in the tank.

Write down the final differential
dx

ds
copper sulphate in the tank, so it is

equal to the rate of copper sulphate in
minus the rate of copper sulphate out.

equation. — is the rate of change of

Write the differential equation in the

dx
form=—+ Px= Q.
orm o +Px=0

Work out the value of ¢ from the initial
conditions.
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You could give any sensible suggestion

here, but make sure it is in the context

the fact that the copper sulphate does not j
disperse immediately on entering the tank. oft'he '?‘ijel; For example, the rate at
which liquid is removed could be made

to vary with the volume of liquid in the

= tank.
Exercise

1 A particle P is moving along the x-axis in the direction of x increasing. At time ¢ seconds, the
velocity of Pis (rsinf)ms~'. When ¢ = 0, P is at the origin. Show that when ¢ = g
P is 1 metre from O.

¢ The model could be refined to take into account

2 A particle P is moving along a straight line. Initially P is at rest. At time ¢ seconds P has velocity
yms~! and acceleration ¢ m s~ where
61
o S 0
(2 +2%)?
Find v in terms of 1.

a

® 3 A particle P is moving along the x-axis. At time ¢ seconds P has velocity vm s~ in the direction x
increasing and an acceleration of magnitude 4e"# ms-2 in the direction x decreasing. When ¢t =0,
P is moving through the origin with velocity 20 m ~! in the direction x increasing. Find:

a vin terms of ¢
b the maximum value of x attained by P during its motion.
® 4 A particle, P, is moving along the x-axis. At time ¢ seconds, the displacement of the particle from
O is xm, and its velocity is vms~!, where
y=e2
Given that the particle is initially at the origin, find x as a function of 1.
5 A sports car moves along a horizontal straight road. At time ¢ seconds the acceleration,

in ms—2, is modelled using the differential equation

dv
3 - 2vt=1t

where v is the velocity of the car in ms-!.

When ¢ = 0, the car is travelling at 1 ms='.

a Show that the velocity of the car at time 7 seconds can be written as v = %(3 e —1). (5marks)
b Find the velocity of the car after 2 seconds. (2 marks)
¢ State, with a reason, whether the model is suitable when ¢ = 4 seconds. (2 marks)

6 A raindrop falls vertically from rest through mist. Water condenses on the raindrop as it falls.
You are given that the motion of the raindrop may be modelled by the equation
1+ +4v=98(r+4)

where 7 is the time in seconds and v is the velocity of the raindrop in ms-'.

St i % e o} tant to be found 6 mark
a Show that v = 3501+ 4) where ¢ is a constant to be found. (6 marks)
b Find the velocity of the raindrop after 5 seconds. (2 marks)

¢ By considering the velocity for large values of 7, suggest one criticism of the model. (1 mark)
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7 A gas storage tank initially contains 500 cm® of helium. The helium leaks out at a constant rate
of 20 cm? per hour and a gas mixture is added to the tank at a constant rate of 50 cm? per hour.
The gas mixture contains 5% oxygen and 95% helium.

Given that there is x cm? of oxygen in the tank after # hours and that the oxygen immediately
mixes throughout the tank on entry,

a show that the situation can be modelled by the differential equation
dx 2%
)

T 25— 50 + 37 (4 marks)
b Hence find the volume of oxygen in the tank after 4 hours. (5 marks)
¢ Explain how the model could be refined. (1 mark)

@ Simple harmonic motion

You can use second - order differential equations to model particles moving with simple harmonic motion.

= Simple harmonic motion (S.H.M.) is motion in which the acceleration of a particle P is always
towards a fixed point O on the line of motion of P. The acceleration is proportional to the
displacement of P from O.

The point O is called the centre of oscillation.
The minus sign means that the acceleration is
always directed towards O.

We write X =—-wtx

This can be shown on a diagram

P o
P il m The constant of proportionality in this
® equation is w? where w is the angular velocity
Q. X - 2 of the particle. -» FM2, Chapter 1

Given that ¥ = % you can use the chain rule to

m Explore simple harmonic motion O

derive a relationship between x, v and a which will using GeoGebra.

allow you to solve the second-order differential
equation for simple harmonic motion:

_dv dv dx You can use ‘dot’ notation to indicate
= dx dr differentiation with respect to time.
vz AR . ) = L and ¥ = ﬂ So if x is used to denote
Since =— = v, you can write acceleration as follows: dr dr
di displacement, then x represents velocity and &
i B dv represents acceleration.
T dx

A particle P moves with simple harmonic motion about a point . Given that the maximum
displacement of the particle from O is a,

a show that v? = w?(a? = x?), where v is the velocity of the particle and «” is a constant.

b show that x = a sin(wr + ), where o is an arbitrary constant.
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dv

a X=—-w2xand X=v—
ax

v = 0 when x = aq,

| o 1. .2
therefore O = —zw?a® + ¢ = ¢ = zw?a®

1.2 5 .o 1 =
Hence 5vZ = —5w2x? + zw2a®
= v2 = w?(a? — x?) as required.

b X+ w?x =0
dix
dr?

+ wix =0

7+ w? =0 = m= Fuw
X = Acos wt + Fsinwt

= Rsin(wf + «) =

This has maximum amplitude R. Since the
maximum amplitude of the particle is a:

X = asin(wt + o) as required.

You can see from the above example that the
path of a particle P under simple harmonic

motion is a sine wave with period %T and
amplitude a.

If the particle is at its equilibrium position at time
t=0,thena=0.

I A
a

-l
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Write down the equation for simple harmonic
motion and use X = "%%: to write a differential
equation involving v and x only.

Separate the variables.

Integrate both sides and add a constant of
integration.

The velocity of the particle will be zero when the
particle is at maximum displacement.

This is a second-order linear differential equation.

s

Write it in the form « g'x +b dx +c¢x=0and
dr? di

then solve the corresponding auxiliary equation.

€« Secton 7.2

Problem-solving

You are given information about the maximum
displacement, so write the general solution in a
form where you can determine the amplitude.
The arbitrary constants become R and o, where

R?= A%+ B?apd tan a =—’;~

M The period of the motion is the time

the particle takes to complete one oscillation.
The amplitude of the motion is the maximum
displacement from the origin.

If the particle is at its stationary point, i.e. its
maximum displacement, when ¢ = 0, then o = %

n_

=Y

-1




Modelling with differential equations
Example o

A particle is moving along a straight line. At time 7 seconds its displacement, xm from a fixed

dr?
Given that at 1 = 0, x = | and the particle is moving with velocity 4ms-!,

point O is such that = —4x.

a find an expression for the displacement of the particle after 7 seconds
b hence determine the maximum displacement of the particle from O.

gfx This is a second-order linear differential equation.
+4x =0 2y

d d
Write it in the form a— + b—y+ c=0,
dat dx

2

me+4=0=m==x2i

—_—

x=Acos2t + Bsin2t Write down and solve the auxiliary equation.

x=1whent=0=>4=1
o _ . Write down the general solution. There are two
Ve = —2sindit+ 2Bcos 2! purely imaginary roots so the general solution is

T dt
w=db b 20 ssifbeB in the form y = Acosgx + Bsingx « Section 7.2

Hence x = cos2t + 2sin2t Substitute the initial condition for x:

1= Acos(0) + Bsin(0)

b x=V5sin(2t + 0.4636..)

Hence maximum displacement is Differentiate x to find an expression for v and use
V5 metres. " the initial condition for v: 4 = —2sin(0) + 2Bcos(0)

——  Write your solution to a in the form Rsin(f + «).
Example o

A particle, P, is attached to the ends of two identical elastic springs. The free ends of the springs
are attached to two points 4 and B. The point C lies between 4 and B such that ABC is a straight
line and AC # BC. The particle is held at C and then released from rest.

At time ¢ seconds, the displacement of the particle from Cis xm and its velocity is vms~'.

The subsequent motion of the particle can be described by the differential equation X = —235.x.

a Describe the motion of the particle.

Given that x = 0.4 and v =0 when r = 0,

b solve the differential equation to find x as a function of ¢

¢ state the period of the motion and calculate the maximum speed of P.

a The particle moves with simple harmonic motion.

b X+ 25x=0
m? + 25 =0 m= %5 | Write down and solve the auxiliary equation.
X = Acos5! + Bsin5? J Then write down the general solution.
xX=04whent=0= A=04 —‘
X =~-54sin51 + 5Bcos 5t Find the values of 4 and B.
v=0whent=0=B=0 J

Hence x = Q.4 cos bt
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¢ Feriod of motion is 2—54{ seconds

X = —=2sin51, 50 maximum speed = 2ms~.

Exercise

® 1 A particle is moving along a straight line. At time ¢ seconds its displacement, xm, from a fixed

9

point O is such that dt: = -9x.

a Describe the motion of the particle. (1 mark)
Given that at = 0, x = 2 and the particle is moving with velocity 3ms~!,
b find an expression for the displacement of the particle after ¢ seconds. (7 marks)

¢ Hence determine the maximum distance of the particle from O. (2 marks)

® 2 A particle is moving with simple harmonic motion. After ¢ seconds its displacement, xm from a
fixed point O is such that ¥ = — 16x.

Given thatat =0, x =5 and x =2,
a find an expression for the displacement of the particle after ¢ seconds. (7 marks)

b Hence determine the period of motion and the maximum distance of the particle
from O. (3 marks)

3 A particle moves along a straight line. The particle moves such that its acceleration, in ms~2,
acts towards a fixed point O and is proportional to its distance, xm, from O.

a Describe the motion of the particle. (1 mark)
Given that the acceleration of the particle is —=5ms=2 when x = 1,

b write down a differential equation to describe the motion of the particle. (2 marks)
If the velocity and displacement of the particle at time ¢ = 0 are 6ms~' and 5m respectively,

¢ find an expression for the displacement of the particle after 7 seconds. (7 marks)

d Hence find the maximum distance of the particle from O. (2 marks)

4 A particle moves along a straight line such that its acceleration, in ms=, acts towards a fixed
point O and is proportional to its distance, xm, from O.

2 -

. sy e d=
The equation of motion is given as ke -kx,t=0

where k is a constant.

Given that the acceleration is =7ms-2 when x = 2,

a write down the value of k. (1 mark)
b Use your answer to part a to find x as a function of ¢ given that x =6 and x = 1 at

time = 0. (7 marks)
¢ Hence find, correct to 2 decimal places, the period of the motion. (2 marks)
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5 A small rowing boat is floating on the surface of the sea, tied to a pier. The boat moves up
and down in a vertical line, such that the vertical displacement, x m, from its equilibrium point
satisfies the equation

d2x
==-225x%,1=0
de?
Given that the maximum displacement is 1.3 m and it occurs when ¢ = 2 seconds,

a find an expression for x in terms of ¢ in the form x = Asinwt + Beoswt where 4, B and w are

constants to be found. Give 4 and B correct to three decimal places. (7 marks)
b State the time elapsed between the boat being at its highest and lowest points. (2 marks)
¢ Criticise the model in terms of the motion of the boat for large values of 1. (1 mark)

6 A particle P is attached to one end of a light elastic spring. The other end of the spring is fixed
to a point 4 on the smooth horizontal surface on which P rests. The particle is held at rest with
AP = 0.9 m and then released. At time ¢ seconds the displacement of the particle from 4 is xm,
The motion of the particle can be modelled using the equation & = —200x.,

a State the type of motion exhibited by the particle P. (1 mark)
Given that x = 0.3 and the particle is at rest when ¢ = 0,

b solve the differential equation to find x as a function of ¢ (7 marks)
¢ find the period and amplitude of the motion (3 marks)
d calculate the maximum speed of P. (2 marks)

@ 7 A particle P is attached to one end of a light elastic spring. The other end of the spring is fixed

to a point O on the smooth horizontal surface on which P rests with OP = 2.6 m and then

released. The motion of P can be described using the equation ¥ = -39 x, where xm is the

displacement of P from O at time ¢ seconds.
Given that x = 1 and the particle is at rest at time ¢ = 0,
a solve the differential equation to find x as a function of ¢ (7 marks)

b find the period of motion. (2 marks)

@ 8 A smooth cylinder is fixed with its axis horizontal. A piston of mass 2.5kg is inside the cylinder,
attached to one end of the cylinder by a spring of natural length 50cm. The piston is held at rest
in the cylinder with the spring compressed to a length of 42cm. The piston is then released. The
spring can be modelled as a light elastic spring and the piston can be modelled as a particle.

The motion of P can be described using the equation ¥ = —320x, where xcm is the compression
of the spring from its natural length at time 7 seconds.

Given that x =8 and v =0 when t = 0,
a solve the differential equation to find x as a function of ¢ (7 marks)

b find the period of the resulting oscillations. (2 marks)

9 A pendulum P is attached to one end of a light inextensible string. The other end of the string
is attached to a fixed point 4 on a ceiling. The pendulum hangs in equilibrium at a point B
vertically below A4.

The pendulum is then moved through a horizontal distance of 15cm and released from rest.

170



Chapter 8

The subsequent motion can be modelled using the equation & = —@x where xcm is the
horizontal displacement from the vertical at time ¢ seconds and 7 = 0.

a Solve the differential equation to find x as a function of . (7 marks)
b Find the period and amplitude of the motion. (3 marks)

Anton says that since the pendulum describes simple harmonic motion, the model suggests that
the pendulum will stay swinging forever.

¢ Suggest a refinement of the model in light of this statement. (1 mark)

m Damped and forced harmonic motion

You can refine the model for simple harmonic motion by adding an additional force which is
proportional to the velocity of the particle. When this force acts so as to slow the particle down it is
known as a damping force, and the motion of the particle is known as damped harmonic motion.

= For a particle moving with damped harmonic motion m You could also write
':I_-:.,_k +wir=0 this as ¥ + kx + w?x =0.

where x is the displacement from a fixed

point at time ¢, and & and w? are positive

constants. m This is an example of a second-order
homogeneous differential equation. You can solve
equations like this by considering the auxiliary
equation. « Section 7.2

There are three separate cases corresponding to
the auxiliary equation having distinct real, equal
or complex roots.

When k? > 4w? there are two distinct real roots for the auxiliary equation. This is known as heavy
damping. In this case there will be no oscillations performed as the resistive force is large compared
with the restoring force.

When k? = 4w? the auxiliary equation has equal roots. This is known as critical damping. Again there
will be no oscillations performed.

When k¢ < 4w? the auxiliary equation has complex roots. This is known as light damping and is the
only case where oscillations are seen. The amplitude of the oscillations will decrease exponentially
over time.

For heavy and critical damping the exact nature of the motion will depend on the initial conditions
given.

For light damping the period of the observed oscillations can be calculated.

A particle P of mass 0.5 kg moves in a horizontal straight line. At time 7 seconds, the displacement of
P from a fixed point, O, on the line is xm and the velocity of P is yms~!. A force of magnitude 8x N
acts on P in the direction PO. The particle is also subject to a resistance of magnitude 4v N

When t =0, x=1.5 and P is moving in the direction of increasing x with speed 4ms-'.

i“’( ‘i’f 162=0 b Find the value of x when ¢ = 1.

a Show tha
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a —pp
Bx + 4y Draw a diagram to show the situation.
0 < @
- X >
F=ma
—-(&x + 4v) = 0.5%
05X+ 4x+8x=0 The auxiliary equation has equal roots.
de.:' + 8% Lior=0 This means that the general solution is in
dt® at the form x = (4 + Br)e™, where a is the
b Auxiliary equation: root. « Section 7.2
me+ &m+16 =0
(m+4)2=0 ~ Use the initial conditions given in the
m=-4 question to obtain values for A and B.

General sclution is x = (4 + Bifle~¥

PR NS5 4 Problem-solving

dx i E
= Be™# — 4(4 + Br)e™ This is an example of critical damping:
=0, v=4=4=8B-44 VA

B=4+44=4+4x%x15=10
So x =(1.5 + 10f)e~
t=1=x=11.5e%=0.2106...
Whent =1, x = 0.211 (3 a.f)

oy
e
X

0

m Explore damped harmonic O

motion using GeoGebra.

A particle P hangs freely in equilibrium attached to one end of a light elastic string. The other end
of the string is attached to a fixed point 4. The particle is now pulled down and held at rest in a
container of liquid which exerts a resistance to motion on P. P is then released from rest. While the
string remains taut and the particle in the liquid, the motion can be modelled using the equation

d2x dx . ; ;s
a2 + 6&'}; + Sk2x = 0, where k is a positive real constant
Find the general solution to the differential equation and state the type of damping that the particle

is subject to.

Auxiliary equation: m? + Gkm + 5k? = O
(m+ 5k)m+k)=0

m = -5k or =k If the auxiliary equation has distinct real
General solution is x = Ae™> + Be™* roots aand 3, then the general solution is
The auxiliary equation has two distinct real in the form x = Ae"" + Be™

roots so the particle is subject to heavy
damping.
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One end of a light elastic spring is attached to a fixed point 4. A particle P is attached to the other
end and hangs in equilibrium vertically below 4. The particle is pulled vertically down from its
equilibrium position and released from rest. A resistance proportional to the speed of P acts on P.
The equation of motion of P is given as

d2x dx
2he— 2y =
e +"kdr +2kix=0

where k is a positive real constant and x is the displacement of P from its equilibrium position.

a Find the general solution to the differential equation.
b Write down the period of oscillation in terms of k.

If the auxiliary equation has complex roots
a Auxiliary equation: m® + 2km + 2k* = O p % gi, then the general solution is in the form
_ =2k £v4k® - 4 x 2k* x=er(Acosqt + Bsingt)
a 2
So x = e*(Acoskt + Bsinkty (A coskt+ Bsinkt) can be written as Rcos (kt + )

= -k + ik

m

b Period = 2T to give a period of%

k
Problem-solving

This is an example of light damping:

Vi

N
VoY

The displacement of the particle will oscillate with
a reducing amplitude.

You can investigate the motion of a particle which is subject to the same two forces as above but
is also forced to oscillate with a frequency other than its natural one. This type of motion is called

forced harmonic motion.

= For a particle moving with forced harmonic

motion This is an example of a second-order

d?x ,dx non-homogeneous differential equation. You will

dr? +k dr +w?y = f(r) need to find the solution to the corresponding
where x is the displacement from a fixed h OFtiogene dus el datior t hen_add Ll

i R .. integral, the form of which will depend on f(z).
point at time ¢, and £ and w? are positive S tionT3
constants. iaseaidi
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Modelling with differential equations
Example @

A particle P of mass 1.5kg is moving on the x-axis. At time ¢ the displacement of P from the
origin O is x metres and the speed of P is vms~!. Three forces act on P, namely a restoring force of
magnitude 7.5x N, a resistance to the motion of P of magnitude 6vN and a force

of magnitude 12sin#N acting in the direction OP. When 1 =0, x = 5 and ax =2,

43 P dr
2x % .
e +4 ds + 5x = 8sint.

¢ Describe the motion when ¢ is large.

a Show that

a A5 F=ma a2
—-7.5x - 6; + 12sint = 1.5 e
ij; + Sx + 4‘3: = Bsint
dzf + 4£ + 5x = &sint
dit” ct

b Auxiliary equation: m* + 4m + 5 = O
—4 £V47 -4 x5 -4 £i/4
2 T2

ms=

b Find x as a function of .

a oo CJ

Complementary function: x, = e (4dcost + Bsint)
Particular integral: try x = psint + gcost

ax ;
i pcost — gsint
d?x
dr®
So (—psint — gcost) + 4(pcost — gsint) + S5(psint + gcost) = &sint
(=p — 4q + 5p)sint + (—q + 4p + Bg)cost = Ssint
Equating coefficients of cost: 4p+4¢=0=p+¢g=0
Equating coefficients of sint: —4q+4p=8=>p-q=2
Sop=1andg=-1

= —psint — gcost

So the particular integral is x = sint = cost and the general solution ———
i5 x = e (Acost + Bsint) + sint — cost

=0, x=5=5=4A-1s04=6
x=e3(dcost + Bsint) + sint — cost

Z: = —2e?(Acost + Bsint) + e 2 (=Asint + Bcost) + cost + sint
I=O.i—'::=2=>2=—2A+B+1508=2+12—1=13

Sox=e2(Gcost + 13sint) + sint — cost

c Ast— oo e =0

So x — sint — cost = Rsin(t — o)
R=V1+1=42,

tana=1=2a=

na =

x = 2 sin (! - g)

For large values of t, the motion is S.H.M. with amplitude v2
and period 2.

forced harmonic motion
using GeoGebra.

This is the general
solution to the
corresponding
homogeneous
differential equation.

General solution

= complementary
function + particular
integral

Use the initial
conditions given in
the question to obtain
values for A and B.

Write sin¢ — cost in the
form Rsin(f — «)
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A particle P is attached to end A of a light elastic string 4 B. Initially the particle and the string lie at
rest on a smooth horizontal plane. At time 7 = 0, the end B of the string is set in motion and moves
with constant speed U in the direction 4B, and the displacement of P from A is x. Air resistance acting
on P is proportional to its speed. The subsequent motion can be modelled by the differential equation
d3x dx
+2k— + k’x = 2kU
de dt

Find an expression for x in terms of U, k and 1.

Auxiliary equation: m? + 2km + k2 = O
(m+ k)? =

m= -k
Complementary function: x = (4 + Bt)e ™ The right-hand side of the differential equation
Particular integral: try x =« is constant, so try a constant for the particular
x=x=0 integral.

Sok?a=2kU=a= -2!\—{}

General solution is x = (A + Bt)e ™ + %
oy7 : — - Y :

(=0 x=0 =0=Ad+2Y 4= _2U Use t.he initial conditions given in the question to
_ k k obtain values for 4 and B.
x=—k(A + B)e* 4+ Be™*
1= ==l |
U=-kA + B
B=U+kA=-U

f T T
Dox= (—‘2&—'{” - Uz)e“” + &

Exercise @

1 A particle P is moving in a straight line. At time ¢, the displacement of P from a fixed point on
the line is x. The motion of the particle is modelled by the differential equation
dix | dx )
T +4dr +8x=0

When ¢ =0, P is at rest at the point where x = 2.

a Find x as a function of 1.

b Calculate the value of x when ¢ =—’3-E

¢ State whether the motion is heavily, critically or lightly damped.

2 A particle P is moving in a straight line. At time ¢, the displacement of P from a fixed point on
the line 1s x. The motion of the particle is modelled by the differential equation
d’x  dx )
ar +8dr +12x=0
When ¢ =0, P is at rest at the point where x = 4.

Find x as a function of .
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3 A particle P is moving in a straight line. At time ¢, the displacement of P from a fixed point on
the line is x. The motion of the particle is modelled by the differential equation
d’x . dx
92 +2dt +6x=0

When ¢ =0, P is at rest at the point where x = 1.

a Find x as a function of . (6 marks)
The smallest value of ¢, t > 0, for which P is instantaneously at rest is 7.
b Find the value of 7. (2 marks)

4 A particle P is attached to one end of a light elastic spring. The other end of the spring is
attached to a fixed point 4 and P hangs freely in equilibrium vertically below 4. At time ( =0, P
is projected vertically downwards with speed u. A resistance proportional to the speed of P acts
on P. The motion of P can be modelled using the differential equation

d2x dx
+4k——+4k*x =0
de? dt
where x is the displacement of P from its equilibrium position at time ¢ and & is a positive
constant.
a Find an expression for x in terms of u. t and k. (6 marks)
b Find the time at which P comes to instantaneous rest. (2 marks)

5 A particle of mass 2kg moves in a horizontal straight line. At time ¢ seconds, the displacement
of P from a fixed point O is x metres and the speed of Pis vms~'.

A force of magnitude 6xN acts on P in the direction PO. The particle is also subject to a
resistance of magnitude 2vN. When 1 =0, x = 1 and P is moving in the direction of increasing x
with speed 2ms-!.

a Show that ¥+ x + 3x=0. (2 marks)
b Solve the differential equation in part a to find x as a function of 1. (8 marks)
¢ Find the value of x when ¢ = 2. (2 marks)
d Describe the motion of P for large values of . (1 mark)

6 A particle P is attached to end A of a light elastic spring AB. The end B of the spring is
oscillating. At time ¢ the displacement of P from a fixed point is x. When ¢ =0, x = 0 and
% = %where k is a constant. Given that x satisfies the differential equation
d*x
dr?
find x as a function of 1. (8 marks)

+ 9x = kcost

7 A particle P is attached to end A of a light elastic spring AB. Initially the spring and the particle
lie at rest on a horizontal surface. The end B of the spring is then moved in a straight line in the
direction 4B with constant speed U. As P moves it 1s subject to a resistance proportional to its
speed. The extension, ., in the spring can be modelled using the differential equation

R
a2t Sk ar T 6k*x=5kU
Find an expression in x in terms of 1. (8 marks)
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8 An engineering student is designing an oscillating piston that is attached to a vertical rod. The
piston is to be released from rest from a point half way up the rod so that it oscillates in a vertical
line. The vertical displacement, x metres, of the top of the piston below its initial position at time
¢ seconds is modelled by the differential equation,

2';?3‘ + 3%“-: 100 cosz, 1 = 0
a Show that a particular solution to the differential equation is x = 30 sin# — 10 cos7 (3 marks)
b Hence find the general solution to the differential equation. (5 marks)
¢ Use the model to find, to the nearest centimetre, the vertical distance of the top of the piston
from its initial position 5 seconds after it is released. (4 marks)

@ Coupled first-order simultaneous differential equations

In some real-life situations rates of change of two variables are connected. For example, in a predator-
prey model, the rate of change of the population of bears might be dependent on both the number

of bears and the number of fish in a river. Simultaneously, the rate of change of the number of fish
might be dependent on both the number of bears and the number of fish. In this case, you have two
dependent variables, the number of bears and fish, and one independent variable, time. You can set up
two first-order differential equations to model the rates of change of the numbers of bears and fish.

Letting the number of bears at time ¢ be x and the number of fish at time ¢ be y, you can write:
d

X
—=ax+ by +f(¢
'l}

d) system is said to be homogenous.
Fr ex+dy + gl

These equations are called coupled first-order linear differential equations and you can solve
them simultaneously to find x and y as functions of ¢.

= You can solve coupled first-order linear differential equations by eliminating one of the
dependent variables to form a second-order differential equation.

At the start of the year 2010, a survey began on the numbers of bears and fish on a remote island
in Northern Canada. After ¢ years the number of bears, x, and the number of fish, y, on the island
are modelled by the differential equations

dx

—=03x+0.1y

di 0.3x+ 0.1y (1)

oy 0.1x + 0.5 2

dr__"\+ Sy (2)
d2x dx

a Show that —0.85;-&0.16);:0.

dr?
b Find the general solution for the number of bears on the island at time .

¢ Find the general solution for the number of fish on the island at time ¢.
d At the start of 2010 there were 5 bears and 20 fish on the island.

Use this information to find the number of bears predicted to be on the island in 2020,
e Comment in the suitability of the model.
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Modelling with differential equations

Rearrange equation (1) to make y the subject.

a p= 10£ - 3x ]

; dl

dy - Tod_q‘ _38% — Differentiate both sides with respect to .

ct At at
dox _ 3dX% _ 4y dx _ 5. d

s dt® 2 dt S 0'5(10 al 3“] Substitute your expressions for y and iji into

10-‘-9!L-'§ - 532‘5 +16x=0 equation (2) to form a second-order differential
ar® 4 equation in x and 1.

d®x dx o

"2~ 087, +016x=0 ¥

Rearrange into the correct form.
b m?-08m+016=0=>m=04

Hence x = Ae%# + BteO#

dx

]

Write down the auxiliary equation and solve it.

c = 0.4Ae° + 0.4 Bte®* + Be®
dt G Use the general form of the solution of a
= 10';;; — 3x from equation (1) differential equation with a repeated root.
y = 10(0.4 4% + 0.4 Bte®4 + Bet) .
_ 3(4e04 4 B0 Problem-solving
y = Ae®# + 10Be®# + Btel# You do not need to go through the whole process

to find an expression for y in terms of ¢. If you

d Ab1=0,x=54=5 | differentiate your answer to part b with respect

Abt=0,y=20= B=15 |
X =57 ¢ 1.51eH

At time t = 10: x = Se? + 15e* = 1092
The model predicts there will be 1092
bears on the island by 2020.

5 . dx .
to ¢ you will have expressions for x and o n

terms of ¢ only. You can substitute these into
equation (1) and simplify to obtain the answer.

— Use the initial conditions to find 4 and B.
e The model predicts the number of bears

(and the number of fish) will grow without

Substitute ¢ = 10 into the equation for x. Round
limit so it is unlikely to be realistic. to the hearest whole number.

Two barrels contain contaminated water. At time ¢ seconds, the amount of contaminant in barrel
A is xml and the amount of contaminant in barrel B is y ml. Additional contaminated water flows
into barrel A4 at a rate of Sml per second. Contaminated water flows from barrel 4 to barrel B and
from barrel B to barrel 4 through two connecting hoses, and drains out of barrel 4 to leave the
system completely.

The system is modelled using the differential equations

%=S+g~)-’—%x (1)
dy
ik R 3 @)

}

d?y Y
Show that 6305 + 3703; + 28y = 135.
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dy 4 3

T3 + 9} 20 x from equation (2)
704y 280  _ ) ;
EWT] ¥ ?J =X (3) =————— Rearrange (2) to make x the subject.

dx _704% 280dr dx
'Hf Tt 27 gt WL Differentiate (3) to find -

3 dt?  EY df 9 3 dr 27 ?
d?y dy
di . d - Substitute (3) and (4) into (1), simplify
630 ; + 2&051; =135 + 12y - 9od_-l — 40y coefficients and remove fractions.
dt ! . =
5 GBOdQJ. 5 370‘?*-1', + 28y = 135 as required Write your answer in the form required in the
dt® dt ’ i

question.

Exercise @

® 1 Find the particular solutions to the differential equations

ox =X+

dr Y
dy

ar =77

giventhat x=1land y=2at7=0.

® 2 a Find the general solutions to the differential equations
dx

E—,\+5)
dy
a:-}y-,\

b Given that at time t =0, x = 1 and y = 2, find the particular solutions.

® 3 A system of differential equations is given as

‘c‘"‘ 2x=3y=2

dy

d— =X+)y-= 1
Given that x = 0 and y = | when 7 = 0, find the particular solutions to the system of differential
equations.

4 At the start of 2012, a survey began on the number of sand foxes and the number of meerkats
on a remote desert island. After ¢ years, the number of sand foxes. x, and the number of
meerkats, y, on the island are modelled by the differential equations

dx

di =02x+0.2y
iy 0.5x + 0.4
q = ~0-5x+ 0.4y
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Modelling with differential equations

d2x dx o
ar 0.65 +0.18x =0. (3 marks)

b Show that the general solution for the number of sand foxes at time 7 is

a Show that

x =e“(Acos 3t + Bsin 3t)
where o and 4 are constants to be found. (4 marks)

¢ Find the general solution for the number of meerkats at time ¢.
Give your answer in the form y = Pe*(Qcos 3t + Rsin t) where P is a constant to be found

and Q and R are functions of 4 and B. (3 marks)
d Given that there were initially 3 sand foxes and 111 meerkats on the island, during which

year does the model predict that the meerkats die out? (5 marks)
e How many sand foxes will there be when the meerkats die out? (1 mark)
f Use your answers to parts d and e to comment on the model. (1 mark)

5 A tank of water contains two different types of chemical that react with each other. The rates of
change of each chemical can be modelled using the differential equations

dx
—==3x+2

dt Yy

dy

P 2x+y

where x is the number of litres of chemical X and y is the number of litres of chemical Y at time
t hours.

Initially there is one litre of chemical X and two litres of chemical Y in the tank.

a Show that the solutions to the differential equations can be written as

x = Pe™!
y=Qe"
where P and Q are functions of ¢ to be found. (8 marks)
b Find, correct to three significant figures, the amount of each chemical at time ¢ = 2 hours.
(2 marks)
¢ Use the model to describe what happens to the amount of each chemical as 7 gets large.
(2 marks)

6 A freely hanging pendulum oscillates in both the x and y directions. At time ¢, the rates of
change of the x and y displacements are given by the differential equations

dx
Q=Y
dy
a =4x
a Show that the pendulum describes simple harmonic motion in the y direction. (3 marks)

Given that the initial displacement of the pendulumis x =4 and y =5,
b find the particular solutions to the system of differential equations. (6 marks)
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7 Joanna is investigating how a harmful substance from pollution is absorbed by the human body.
She finds that the substance enters the body in the bloodstream and is transferred between the
blood and the bodily organs. The harmful substance is then expelled from the body through, for
example, sweat.

The amount of the substance in the blood, xmg, and the organs, ymg, at time ¢ days, can be
modelled using the differential equations

%;'— =-0.03x +0.01y + 50
L 0.01x - 0.03
37 = 0.01x - 0.03y
dZx dx
a Show that a2 + 0.065 + 0.0008x = 1.5 (6 marks)
b Hence find the general solutions to the system of differential equations in the form
x = f(¥)
y=g(1) (8 marks)
¢ Describe what happens to the amount of the substance in the blood and the organs as ¢ gets
large. (2 marks)

8 A biologist is examining the rates of change of nutrients in both tree roots and the surrounding
soil. Nutrients pass from the tree roots into the soil and from the soil into the tree roots.
Nutrients also enter the system through both the roots and the soil and escape from the system
in the same way.

The biologist believes that the amount of nutrients in the roots, x, and the amount of nutrients
in the soil, y, at time t hours, can be modelled using the differential equations

— =2y 4+ p+1
dr e
dy dx 5
gy Aty 2
dxx dx
a Show that 7 + ar L (4 marks)
b Find the general solutions to the system of differential equations. (6 marks)

¢ Using your answers to part b, comment on the suitability of the biologist’s model. (2 marks)

Challenge m A population is stable when its rate of

A closed environment supports populations of owls growth is zero.
and field mice. At time r months, the sizes of each

population are x and y respectively. The situation is

modelled by the pair of differential equations

dy »*
4= am
dx )
P 0.02y — x

Find the number of owls and the number of field
mice such that the population of both is stable.
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Modelling with differential equations

® 1 A particle P moves along the x-axis in the direction of x increasing. At time ¢ seconds, the velocity
of Pis vms~' and its acceleration is 20 7e~"ms-2. When ¢ = 0 the velocity of P is 8ms-'. Find:

a vin terms of ¢ (4 marks)
b the limiting velocity of P. (3 marks)

@ 2 A particle P moves along a straight line. Initially P is at rest at a point O on the line. At time

: ; 18 :
t seconds, where ¢ = 0, the acceleration of P is —;1115'3 directed away from O.

2t+3
Find the value of ¢ for which the speed of P is {5.48 m :—'. (5 marks)
® 3 A car moves along a horizontal straight road. At time ¢ seconds the acceleration of the car is
%m s~2 in the direction of motion of the car, When ¢ = 0, the car is at rest. Find:
a an expression for v in terms of ¢ (4 marks)
b the distance moved by the car in the first 10 seconds of its motion. (4 marks)

@ 4 A particle P is moving in a straight line with acceleration cos®tms~2 at time ¢ seconds.
The particle is initially at rest at a point O.

a Find the speed of P when ¢ = 7. (4 marks)
b Show that the distance of P from O when = Z}T 1S 6'—4(?;'3 + 8)m. (4 marks)
® 5 A particle P is moving along the x-axis. At time ¢ seconds, P has velocity vms~' in the direction

: . . . 2t+ 3
x increasing and an acceleration of magnitude PO

ms~2 in the direction x increasing.

When ¢ =0, P is at rest at the origin O. Find:
a vinterms of ¢ (4 marks)
b the distance of P from O when ¢ = 2. (4 marks)

6 A colony of bacteria reproduces in a laboratory jar. At time ¢ = 0, the volume of bacteria is [ cm?.

Scientist Steve suggests that the rate of growth of the bacteria can be modelled using the
differential equation

dV

e 2043V +5
where / is the time in hours and V is the volume in cm’.
a Show that V= At + B + Ce¥ where A, B and C are exact constants to be found. (6 marks)
b Find the volume of bacteria after 2 hours. (2 marks)
¢ Give one criticism of Steve’s model and suggest one refinement he could make. (2 marks)

7 A fluid reservoir initially contains 10000 litres of unpolluted fluid.
The reservoir is leaking at a constant rate of 200 litres per day.

It is suspected that contaminated fluid flows into the reservoir at a constant rate of 300 litres per
day and that the contaminated fluid contains 4 grams of contaminant in every litre of fluid.
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It is assumed that the contaminant instantly disperses throughout the reservoir upon entry.
Given that there are x grams of contaminant in the reservoir after ¢ days,

a Show that the situation can be modelled by the differential equation

dx 2x
ar =20 To0+e Cparke)
b Hence find, correct to three significant figures, the number of grams of contaminant in the
reservoir after 7 days. (5 marks)
¢ Explain how the model could be refined. (1 mark)

@ 8 A particle P is attached to one end of a light elastic string of natural length 1.2m. The other
end of the string is attached to a fixed point 4. The particle is hanging in equilibrium at the
point O, which is vertically below A.

The particle is now displaced to a point B. vertically below A, and released from rest.

The subsequent motion while the string remains taut can be modelled using the equation
X =—49x, where xm is the displacement of the particle from O at time ¢ seconds.

a Describe the motion of the particle while the string remains taut. (1 mark)

b Solve the differential equation and hence find the period of the motion. (6 marks)

® 9 A particle P of mass 0.6kg is attached to one end of a light elastic spring of natural length
2.5m. The other end of the spring is attached to a fixed point 4 on the smooth horizontal table
on which P lies. The particle is held at the point B where AB = 4m and released from rest.
The motion of the particle can be described using the equation ¥ = —%Q.x, where xm is the
displacement of the particle from A4 at time 7 seconds.

a Describe the motion of the particle. (1 mark)

b Solve the differential equation and hence find the period and amplitude of the motion.
(7 marks)

10 A fisherman’s float bobs up and down on the surface of the water. The float moves up and
down in a vertical line, such that the vertical displacement, x cm, from its equilibrium point
satisfies the equation

d*x
=-0.25x,t=0
dr?
Given that the maximum displacement is 4 cm and it occurs when 7 = 2 seconds,

a find an expression for x in terms of ¢ in the form x = A sinw? + Bcoswt where A, Band w

are constants to be found. Give 4 and B correct to three decimal places. (7 marks)
b State the time elapsed between the float being at its highest and lowest points. (2 marks)
¢ Criticise the model in terms of the motion of the float. (1 mark)

11 A particle P of mass m 1s moving in a straight line. At time 7 the displacement of P from a fixed
point O on the line is x. Given that x satisfies the differential equation

‘;I" + 2k%‘:¥+ nix =0
where k and n are positive constants with k < n,
a find an expression for x in terms of k, n and 1. (6 marks)
b Write down the period of the motion. (1 mark)
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Modelling with differential equations

12 A particle P of mass m is attached to one end of light elastic spring. The other end of the
spring is attached to a fixed point 4 and P is hanging in equilibrium with 4P vertical.

The particle is now projected vertically downwards from its equilibrium position with speed
U. A resistance of magnitude 2mkv, where v is the speed of P, acts on P. Attime ¢, t > 0, the
displacement of P from its equilibrium position is x.

The motion of the particle is modelled by the differential equation

d2x dx o

e +2kd: +2k*x=0
a Show that P is instantaneously at rest when k¢ = (n + %}w, where n € N. (9 marks)
b Sketch the graph of x against 1. (3 marks)

13 A particle P of mass m is attached to one end of a light elastic spring. The other end of the
spring is attached to the roof of a stationary lift. The particle is hanging in equilibrium with
the spring vertical. At time ¢ = 0 the lift starts to move vertically upwards with constant speed
U. At time ¢, t > 0, the displacement of P from its initial position is x.

The motion of the particle is modelled by the differential equation

dx
+n?x = n?Ut
de?
a find an expression for x in terms of f and n. (8 marks)

At time ¢ = T, the particle is instantaneously at rest. Find:
b the smallest value of T (3 marks)

¢ the displacement of P from its initial position at this time. (1 mark)

14 A theme park ride designer is designing a new ride where the passengers will be in an enclosed car
attached to a horizontal bar. The car will be released from rest from a point half way along the
bar so that it oscillates in a horizontal line. The horizontal displacement, x metres, of the centre
of the car relative to its initial position at time ¢ seconds is modelled by the differential equation,

?“; + 4—3—: + 3x=150cost,t =0
a Show that a particular solution to the differential equation is

x=30sin/+ 15cost (3 marks)
b Hence find the general solution to the differential equation. (5 marks)

¢ Use the model to find, to the nearest metre, the horizontal distance of the centre of the car
from its initial position 10 seconds after it is released. (4 marks)
. . , . . dx  dx :
15 a Find the general solution to the differential equation e + ZE + 10x =27cost - 6sint.
(8 marks)

The equation is used to model water flow in a reservoir. At time ¢ days, the level of the water
above a fixed level is xm. When ¢ = 0, x = 3 and the water level is rising at 6 metres per day.

b Find an expression for x in terms of . (2 marks)

¢ Show that after about a week, the difference between the lowest and highest water level is
approximately 6 m. (3 marks)
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At the start of 2008 a survey began on the number of hedgehogs and the number of slugs in a
closed ecosystem. After ¢ years, the number of hedgehogs. x, and the number of slugs, y. in the
ecosystem are modelled by the differential equations

de =7
dy i
ds __“”;f Y ;
- X
a Show that T 6 ar T 10x = 0. (3 marks)

b Show that the general solution for the number of hedgehogs at time ¢ is
x =e(Acos 3t + Bsin3t)

where «v and 3 are constants to be found. (4 marks)
¢ Find the general solution for the number of slugs at time ¢. (3 marks)
d Given that there were initially 10 hedgehogs and 20 slugs in the ecosystem, during

which year does the model predict that the slugs die out? (5 marks)
e How many hedgehogs will there be when the slugs die out? (1 mark)
f Use your answers to parts d and e to comment on the model. (1 mark)

A sealed tank of bionutrient contains two different types of organism that interact with each
other. The rates of change of each organism can be modelled using the differential equations

=—4x+ 3y

dx
dt
Y o Tyan
—==3x+2y
dr v’
where x is the number of organism M and y is the number of organism N at time ¢ days.
Initially x = 10 and y = 20.
a Show that the solutions to the differential equations can be written as

x=Ate”" + Be™!

y=Cte*+ De™
where 4, B, C and D are constants to be found. (8 marks)
b Find, correct to the nearest organism, the number of each organism at time 7 = 2.1 days.
(2 marks)
¢ Use the model to describe what happens to the numbers of each type of organism as ¢
gets large. (2 marks)

An industrial process consists of two linked tanks, 4 and B, containing a chemical solution. The
solution is free to pass between the tanks but it flows from A4 to B at a different rate than it flows
from B to A. The solution also enters both tanks, and flows directly out of tank B. The situation
is modelled using the differential equations

dx _, 1 1.
[T &
dy 1 2
7 1 -E-E,\ -3 (2)

where x litres is the amount of solution in tank 4 and y litres 1s the amount of solution in
tank B at time ¢ minutes.

dy _dy
a Show that 6&5 A ?a +y=9 (6 marks)
b Given that both tanks initially contain 8 litres of solution, find x and y as functions of 1.
(7 marks)
¢ State, with a reason, the approximate amount of solution in each tank after the system has
been running for a long time. (2 marks)
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Challenge

a Three water tanks are positioned as shown in the diagram.
Water flows from tank X to tank Y, and from tank Y to tank
Z, by means of identical taps. Each tap allows water to flow at —
a rate of r gallons/hour, where r is the amount of water in the
corresponding tank in gallons.

Initially, tank X contains 300 gallons of water, tank Y contains
200 gallons of water, and tank Z contains 100 gallons of water. B
The taps are opened.
i Show that after 7 hours have elapsed, the amount of water  z
in tank X 'is 300e~ gallons.
ii  Find the number of minutes after which tanks X'and Y
contain the same amount of water.
ili Find an expression for the amount of water in tank Z after
t hours.

b A second identical tap is attached to tank X, which is filled to
the brim. Tanks Y and Z are emptied, and all three taps are
opened. LS
i Show that the amount of water in tank Y'is at a maximum

after 42 minutes have elapsed, to the nearest minute. ¥
ii Find the exact time elapsed before the amounts of water in
tanks Y and Z are equal.

Summary of key points

1 Simple harmonic motion (S5.H.M.) is motion in which the acceleration of a particle P is always
towards a fixed point O on the line of motion of P. The acceleration is proportional to the
displacement of P from O.

L X= vdi:—

3 For a particle moving with damped harmonic motion
d’x  ,dx 5. _
F + k a +wex =10

where x is the displacement from a fixed point at time ¢, and k and w? are positive constants.
& For a particle moving with forced harmonic motion
d?_
e +k—d-+w x = f(r)
where x is the displacement from a fixed point at time ¢, and k and w? are positive constants.

5 You can solve coupled first-order linear differential equations by eliminating one of the
dependent variables to form a second-order differential equation.
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1064

Relative to the origin O as pole and

initial line 6 = 0, find an equation in polar

coordinate form for:

a a circle, centre O and radius 2 (1)

b a line perpendicular to the initial line
and passing through the point with
polar coordinates (3, 0) (2)

¢ a straight line through the points with
polar coordinates (4, 0) and (4, %) 2)

& Section 5.2

Sketch the curve with polar equation
r=acosl3f,0<0<2mw (2)
b Find the area enclosed by one loop of
this curve. (6)
« Sections 5.2, 5.3

B

Sketch the curve with polar equation
r=3cos20, —%ﬁﬁ‘(% )
b Find the area of the smaller finite

region enclosed between the curve and
the half-line 6 = 7 (6)

¢ Find the exact distance between the
two tangents which are parallel to the
initial line. (6)
« Sections 5.2, 5.3, 5.4
Sketch. on the same diagram, the
curves defined by the polar equations
r=aand r=a(l +cosf), wherea is a
positive constant and -r < f#=m. (4)
b By considering the stationary values of
rsin @, or otherwise, find equations of
the tangents to the curve r = a(l + cosd)
which are parallel to the initial line.  (6)
¢ Show that the area of the region for
which ¢ < r < a(l + cosf) is

(m + 8)a’
™ . a ©)

« Sections 5.2, 5.3, 5.4

-}

Review exercise

5 The curve C has polar equation

= 3acosf, —% =0 < % The curve D has

polar equation r = a(l + cosf)), -7 < 0 < .
Given that «a is positive,

a sketch, on the same diagram, the
graphs of Cand D, indicating where
each curve cuts the initial line. (4)

The graphs of C and D intersect at the
pole O and at the points P and Q.

b Find the polar coordinates of P
and Q. 3)
¢ Use integration to find the exact value

of the area enclosed by the curve D

and the lines # =0 and 0 = % (6)

The region R contains all points which lie
outside D and inside C.

Given that the value of the smaller area
enclosed by the curve C and the line ¢ :%

is
3a?

16 27 - 3V3),
d show that the area of R is wa’. (6)
4+ Sections 5.2, 5.3, 5.4

a Show on an Argand diagram the locus
of points given by the values of =z
satisfying

z=3+4i|=5 (2)

b Show that this locus of points can be
represented by the polar curve
r=6cosf - 8sinf. (4)

The set of points A is defined by

A:{::—% =argz= 0} Ni{z:|z = 3 + 4i|= 5}

¢ Find, correct to three significant
figures, the area of the region defined
by A. 4)

« Sections 5.2, 5.3



Review exercise 2

7

a Sketch the curve with polar equation

r=cos26, _J} << "} (2)

At the distinct points 4 and B on this
curve, the tangents to the curve are
parallel to the initial line, 6 = 0.

b Determine the polar coordinates of A4
and B, giving your answers to

3 significant figures.
<+ Sections 5.2, 5.4

a Sketch the curve with polar equation

(2)

At the point 4, where A4 is distinct from

O, on this curve, the tangent to the curve

is parallel to 0 = %

r=sin26‘.0$3£%

b Determine the polar coordinates of the
point 4, giving your answer to
3 significant figures.

(6)

4 Sections 5.2, 5.4

The curve C has polar equation

T _ T
r=6cosf, —5-9< 5
and the line D has polar equation
" s s 1
] —35ec(3 —9).—656< 6

a Find a Cartesian equation of C and a
Cartesian equation of D. (4)

b Sketch on the same diagram the graphs
of Cand D, indicating where each cuts

the initial line. 4)
The graphs of C and D intersect at the
points P and Q.
¢ Find the polar coordinates of

Pand Q. (3)

« Sections 5.1, 5.2

Initial line

@

The figure shows a sketch of the curve C
with polar equation

g s
rF=a’sin20,0<60 < =

where « is a constant.

Find the area of the shaded region
enclosed by C.

(6)

« Section 5.3

m

-

Initial line

The figure shows a curve C with polar

equation r=4a cos 20,0 <0 < % and a
line m with polar equation ¢ = % The

shaded region, shown in the figure, is

bounded by C and m. Use calculus to

show that the area of the shaded region

is 3a%(7 = 2). (6)
« Section 5.3

6':7

r=all + % cosf)

1.5a -
Initial line

—0.5a

-
]

The curve shown in the figure has polar
equation

r=all +4cosf),a>0,0<0<2nm

Determine the area enclosed by the curve,
giving your answer in terms of « and 7.

(6)

« Section 5.3
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r=sin2f

0 Initial line

The figure show the half-lines =0, 0 =

and the curves with polar equations
r=%,0£ Gég,and

iy
2
Find the exact values of # at the two

points where the curves cross.

£
2 k]

r=sin20,0 <6<

4)
Find by integration the area of the
shaded region, shown in the figure,
which is bounded by both curves.  (6)
<« Sections 5.2, 5.3

0

The curve C, shown in the figure, has
polar equation

r=a3+V5cos),-r<0<nm
a Find the polar coordinates of the

points P and Q where the tangents to
C are parallel to the initial line. (6)

The curve C represents the perimeter
of the surface of a swimming pool. The
direct distance from P to Q is 20m.

b Calculate the value of a. (2)
¢ Find the area of the surface of
the pool. (6)

¢« Sections 5.2, 5.3, 5.4

Initial line

@ 16

Review exercise 2

13 =1

-- 12y

Initial line

o
ol

1

1

H
I

i
!
i
i
W
I

i

i

i

i

i

I

zZ Y
The figure shows a sketch of the cardioid C
with equation r =a(l + cos ), —-m <O < .
Also shown are the tangents to C that are
parallel and perpendicular to the initial line.
These tangents form a rectangle WXYZ.

a Find the area of the finite region,
shaded in the figure, bounded by the
curve C. (6)

b Find the polar coordinates of the
points 4 and B where WZ touches the
curve C. (6)

¢ Hence find the length of WX. (2)

Given that the length of WZ is 3\/5“.

d find the area of the rectangle WXYZ. (2)
A heart-shape is modelled by the cardioid
C, where a = 10cm. The heart shape is cut
from the rectangular card WXYZ, shown

the figure.

e Find a numerical value for the area of
card wasted in making this heart
shape.

3)

« Sections 5.3, 5.4

Initial line

The figure is a sketch of two curves C,
and C, with polar equations

Ci:r=3a(l —cost),-r=0<m
and C,:r=a(l +cosl),-r=0<m



Review exercise 2

The curves meet at the pole O and at the ® 18
points 4 and B.
a Find, in terms of «, the polar

coordinates of the points 4 and B. (2)

b Show that the length of the line AB
is 3;3 a. @ @ 19
The region inside C, and outside C, is
shaded in the figure.
¢ Find, in terms of «, the area of this
region. (6)
A badge is designed which has the shape @ 20
of the shaded region.
Given that the length of the line AB is
4.5¢cm,
d calculate the area of this badge, giving @ 21
your answer to 3 significant figures. (3)

< Sections 5.2, 5.3

r=a(5-2cosl)

F=a(3+ 2cosf)

A Initial line

A logo is designed which consists of two

overlapping closed curves.

The polar equations of these curves are
r=a(3+2cosfl), 0 =60<2w and
r=a(5-2cosf), 0=<60<2r

The figure is a sketch (not to scale) of

these two curves.

a Write down the polar coordinates of

the points 4 and B where the curves @ 24
meet the initial line. 2)
b Find the polar coordinates of the points
C' and D where the two curves meet. (4)
¢ Show that the area of the overlapping
region, which is shaded in the figure, is
%(4% - 48/3) (6)
4+ Sections 5.2, 5.3

Find the value of x for which

2tanhx—-1=0,
giving your answer in terms of a natural
logarithm. (4)

« Section 6.1

Starting from the definition of cosh x in
terms of exponentials, find, in terms of
natural logarithms, the values of x for
which 5 = 3cosh x. (4)

« Section 6.1

The curves with equations y = 5sinh x and

y =4coshx meet at the point A(Inp, g).

Find the exact values of p and ¢. (4)
¢« Section 6.3

Find the values of x for which
Scoshx — 2sinhx =11,
giving your answers as natural

logarithms. (5)
« Section 6.3

By expressing sinh 2.x and cosh 2.x in terms
of exponentials, find the exact values of x
for which
6sinh2x +9cosh2x =7,
giving each answer in the form %In P
where p is a rational number. (5)
< Section 6.3

Given that
sinhx + 2coshx =k,

where k is a positive constant,

a find the set of values of k for which at
least one real solution of this equation
exists (4)

b solve the equation when k = 2. 3)

« Section 6.3

Using the definitions of cosh x and sinh x

in terms of exponentials,

a prove that cosh’ x — sinh*x = 1 (3)

2 —

sinhx tanhx

giving your answer in the form kIna,

where k and a are integers. (5)
<« Section 6.3

b solve the equation

199
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@ 25 a From the definition of cosh x in terms

(®) 26

@
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b Sketch the graph of y = artanh x.
¢ Solve the equation x = tanh(Inv6x ) for

of exponentials, show that

cosh2x = 2cosh’x - 1. 3)
Solve the equation

cosh2x — Scoshx =2,
giving the answers in terms of
natural logarithms. (5

« Section 6.3

Using the definition of cosh.x in terms
of exponentials, prove that
4cosh® x — 3cosh x = cosh 3x.

(4)
Hence, or otherwise, solve the equation
cosh 3x = 5cosh x,

giving your answer as natural
logarithms.

C))

« Section 6.3

Starting from the definitions of cosh x
and sinh x in terms of exponentials,
prove that
cosh(A4 — B) = cosh Acosh B
— sinh 4 sinh B.

Hence, or otherwise, given that
cosh(x — 1) = sinh x, show that

b
e+ 1
tanhx = ———
e+ 2e-1

4

« Section 6.3

Starting from the definition
iy ~y

: e —
sinhy ==—5—,

“

prove that, for all real values of x,

arsinh x = In(x + «vm ). (4)
Hence, or otherwise, prove that, for
0<o<m,

arsinh(cotf) = In (cot g) (5

<« Sections 6.2, 6.3

Starting from the definition of tanhx
in terms of e*, show that

artanh x = m({*") Ixl<1 (5)
(2)

() = g,

)

+ Sections 6.2, 6.3

®) 30

@

(5) 32

® 33

a

-4

Show that, for0 < x <
= I—x )

L,
ln(1+ (1—1’))

2)

In

Using the definitions of cosh x and
sinh x in terms of exponentials, show

that, for 0 < x < 1,

arcosh(%) =) ln(Hv—i_‘-) 3)
Solve the equation

3tanh’x —4sechx + 1 =0,
giving exact answers in terms of
natural logarithms. (4)

« Sections 6.2, 6.3

Express cosh 36 and cosh 56 in terms
of cosh 6.

4)
Hence determine the real roots of the
equation

2cosh 5x + 10cosh 3x + 20cosh x = 243,

giving your answers to 2 decimal
places.

(6)

+ Section 6.3

Show that, for x = Ink, where kis a
positive constant,

4
! )
Given that f(x) = px — tanh 2x, where

p is a constant, find the value of p for
which f(x) has a stationary value at
x =1In2, giving your answer as an
exact fraction.

cosh2x =

(6)

¢« Sections 6.1, 6.4

The curve with equation

y=-x+tanh4x, x =0,

has a maximum turning point A.

Find, in exact logarithmic form, the
x-coordinate of 4.

(8]
Show that the y-coordinate of A4 is
72V3 —In(2 + V3)). 3)

« Section 6.4
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®) 34

® 35

1ED36

EP) 37

v = sinh 2xcosh 2x

a Find the first three non-zero terms of
the Maclaurin series for y, giving each
coefficient in its simplest form. (7)

b Find an expression for the nth
non-zero term of the Maclaurin series
for y. (2)

¢ Section 6.4

f(x) = cos 2xcosh x

a Find the first two non-zero terms of the
Maclaurin series for f(.x), giving each
coefficient in its simplest form.

(6)
b Hence find, correct to two significant
figures, the percentage error when
this approximation is used to evaluate
f(0.1). )

« Section 6.4

Use the substitution x = —%— _where a is

inh 6’
a constant, to show that, for x>0 a>0,

1
f.wxl + az

|
X=—-= arsmh( )+oonstant

(6)

« Section 6.5

a Prove that the derivative of artanh x.
1
S @)

b Find fartanh xdux. (4)
+ Sections 6.4, 6.5

-1<x<1,1s

a Starting from the definition of sinh x in
terms of e*, prove that

arsinhx = In(x + VX2 + 1). (2)
b Prove that jthe derivative of arsinh x
is (1 + X2~ @)
¢ Show that tpe equation
(1+\)d ,+1fj1 -2=0
is satisfied when y = (arsinh x)*. @)

d Use integration by parts to find

I
f arsinh xdx, giving your answer in
0

terms of a natural logarithm. (5)

« Sections 6.2, 6.4, 6.5

® 39

A +dx+5=(px+q) +r

a Find the values of the constants p, ¢

and r. (2)
b Hence, or otherwise, find
1
f¢ﬁ+4x+5dx “)

¢ Show that

f#r_____._d,x
Vax?+4x + 5
=In(2x+ D)+ vd4x’+4x+5) + k,

where £ 1s an arbitrary constant. (5)
4 Section 6.5
g xX+2
- ﬁd &
’ « Section 6.5
Show that

——dx = hk,
[ =i

where & 1s a rational constant to be

found. (6)
« Section 6.5
Vi
!
:
3
;‘:
!
R
b
.:i'l
]
0 i ;.  °

The figure above shows a sketch of the
curve with equation

y=xarcoshx,l <sx =<2,
The region R. shaded in the figure, 1s
bounded by the curve, the x-axis and the
line x = 2.
Show that the area of R is

V3

ain2+v3) - %5~ ®)

« Section 6.5
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43 The diagram shows the cross-section of
a new greenhouse. Each unit on the axes
represents 1 m.

The curved top of the roof of the

greenhouse is modelled using the equation
10

Vx2+9

VA

[ 0
o

2 O

Given that the greenhouse can be
modelled as a prism, length 55m, find,
correct to three significant figures, the
volume of the greenhouse. (8)
&« Section 6.5

® 44 Find, in the form y = f(x), the general
solution to the differential equation

dy

dx

2y o6x-5x>0 )
« Section 7.1

® 45 Solve the differential equation
d ¥ N
a% - J—{ =x>. x>0

giving your answer for y in terms of x. (5)
« Section 7.1

@ 46 Find the general solution to the
differential equation

dy
(x+ 1)é+ 2';.':%, x>0

giving your answer in the form
y =f(x). (5)

4+ Section 7.1

@ 47 Obtain the solution to

dy t 2 D<x<ZX
— 4 ytanx =e"*cosx =X o
dx "~ 3 2

for which y = 2 at x = 0, giving your
answer in the form y = f(x). (6)
¢ Section 7.1
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(®) 49

(®) 50

® 51

®) 52

Find the general solution to the
differential equation

dy , T
i » Vo s . 1 —
T ¥ 2ycot2x=smx,0<x < 5

giving your answer in the form

y = f(x). 5)

< Section 7.1

Solve the differential equation
}3
(I+x) gz —xy=xe™
given that y=1at x =0. (6)
« Section 7.1

a Find the general solution to the
differential equation

y .
COSX (_ﬁ + (sinx)y = cos’x (5)

b Show that, for 0 < x < 27, there are
two points on the x-axis through
which all the solution curves for this
differential equation pass. (4)
¢ Sketch the graph, 0 < x < 2, of the
particular solution for which y = 0 at
x=0Q. 3)

+ Section 7.1

Find the general solution to the
differential equation

dy

It 2y=x 5)
Given that y=1 at x = 0,

b find the exact values of the coordinates
of the minimum point of the particular
solution curve, 3)

¢ draw a sketch of the particular
solution curve. (2)
< Section 7.1

a Find the general solution to the

differential equation
dy o 4
4, = rsinhx (4)

b Find the particular solution which
satisfies the condition that y = ¢* when
=0, (2)

« Section 7.1
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EP) 53

@ s

@

Given that 0 satisfies the differential

equation
d* 9 de
+50=0
der di

and that. when ¢t =0, # = 3 and %—(j = =0

express 0 in terms of 1.
« Sections 7.2, 7.4

Given that 3xsin2x is a particular

integral of the differential equation
dy
dx?

where £ is a constant,

= kcos2x

3

a calculate the value of &

b find the particular solution of the
differential equation for which at x = 0,
y = 2, and for which at x = %, y= % (8)
« Sections 7.3, 7.4

Given that a + bx is a particular integral
of the differential equation
dy  dy
& Yax
a find the values of the constants «
and b

+4y =16 +4x

(3)
b find the particular solution to this
differential equation for which y = 8

(8)

+ Sections 7.3, 7.4

dy
andF=9at.\‘=0.
X

d*y

At

a Find the general solution to the
differential equation.

dy
+4d\ + 5y =65sin2x, x>0

8

b Show that for large values of x this
general solution may be approximated
by a sine function and find this sine
function.

(2)

« Section 7.3

a Find the general solution to the
differential equation

dly _dy
ar +2+2y=

T 2e!

@8)

® 53 a

EP) 59

6{}

b Find the particular solution to this
differential equation for which y =1

dy
andd—Jt=latr=0. 2)
« Sections 7.3, 7.4

Find the general solution to the
differential equation

d’x dx
TE 2df+5x 0

b Giventhatx—land%= latis =0,

8)

find the particular solution to the
differential equation, giving your
answer in the form x = (7).

()

¢ Sketch the curve with equation x = (1),
0 = ¢ = 7, showing the coordinates, as
multiples of m, of the points where the
curve cuts the z-axis. (2)

« Sections 7.2, 7.4

=

Find the general solution to the
differential equation

d?y dy
2dr’+7 +3y=3+ 11t (8)
b Find the particular solution to this
differential equation for which y =1
dy
and d_l,- =1 when 1 =0. (2)

¢ For this particular solution, calculate

the value of y when r=1. (2)
« Sections 7.3, 7.4

Find the value of A for which
Axcos3x is a particular integral of the
differential equation

d*y

T 3)

b Hence find the general solution to this
differential equation. (6)

The particular solution of the differential

j=

+ 9y =-12sin3x

dy
equation for which y = 1 and E =2at
x =0, 1is y = g(x).

¢ Find g(x). (2)
d Sketch the graph of y = g(x).
O=sxs=sn (2)

« Sections 7.3, 7.4
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d’y _dy

— - 6

dr?

a Show that Kr’e' is a particular integral
of the differential equation, where K is

a constant to be found. 3)

+9v—4e3‘. t=0

b Find the general solution to the
differential equation. (6)

Given that a particular solution satisfies

b}

d)
] =3and$—lwhenr—0,

¢ find this solution.

Another particular solution which satisfies @ 64

dy
y=1and d_).f = 0 when r = 0, has equation

p=(1-31+2t%)e" 2)

d For this particular solution, draw a
sketch graph of y against ¢, showing
where the graph crosses the 7-axis.
Determine also the coordinates of the
minimum point on the sketch graph. (4)

<« Sections 7.3, 7.4

a Find the general solution to the
differential equation
dx . «dx
P SHI—-"Z’“ 2t+9 (8)

b Find the particular solution of this
differential equation for which x = 3

and gi_% =—1 when ¢ = 0. (2)

2

The particular solution in part b is used
to model the motion of the particle P on
the x-axis. At time ¢ seconds (1 = 0), P1is
x metres from the origin O.

¢ Show that the minimum distance

between O and P is 3(5 + In2)m and
justify that the distance 1s a minimum.

C))

« Sections 7.3, 7.4, 8.3

. 63 Given that x = At*e™' satisfies the

differential equatlon

dx
de?

a find the value of A. 3)

b Hence find the solution to the
differential equation for which x = 1

=gt

dy _ _
and T Oatr=0. (7
¢ Use your solution to prove that for
t=0,x=1. (2)

« Sections 7.3, 7.4

Given that y = kx is a particular solution
of the differential equation
d’y
dx?
a find the value of the constant k. 3)
b Find the most general solution to this
differential equation for which y =0
at x = 0. (6)
¢ Prove that all curves given by this
solution pass through the point (m, 3)
and that they all have equal gradients

+y = 3x,

when x = 7. 3)
d Find the particular solution to the
differential equation for which y = 0 at
x=0and at x = 323 2)
e Show that a local minimum value of
the solution in partd is
3 arccos( %) -3ni-4 (4)
« Sections 7.3, 7.4
During an industrial process, the mass of
salt, Skg, dissolved in a liquid,  minutes

after the process begins, is modelled by
the differential equation

ds 28 1
== =1<12
a0 e 0SIs 1
Given that S=6 when 1t =0,
a find S in terms of ¢ (6)

b calculate the maximum mass of
salt that the model predicts will be
dissolved in the liquid at any one time
during the process. 3)
<« Section 8.1
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A fertilized egg initially contains an
embryo of mass m, together with a
mass 100m, of nutrient, all of which is
available as food for the embryo. At time
t, the embryo has mass m and the mass
of nutrient which has been consumed is
S(m — my).
a Show that, when three-quarters of
the nutrient has been consumed,
m = 16m,,. (3)
The rate of increase of the mass of the
embryo is a constant g multiplied by the
product of the mass of the embryo and

the mass of the remaining nutrient.

dm _
b Show that ar =

The egg hatches at time 7', when
three-quarters of the nutrient has been
consumed.

¢ Show that 105 gm,T = In 64.

Sum 21m, - m). (4)

()

« Section 8.1

Find the general solution to the
differential equation
dv
Jf._ -
dt
and hence show that the solution can
be written in the form v=#(In ¢ + ¢),

where ¢ 1s an arbitrary constant.

v=4t>0

(5)

b This differential equation is used to
model the motion of a particle which
has speed vms™ at time ¢ seconds.
When ¢ = 2, the speed of the particle is
3ms™'. Find, to 3 significant figures, the

speed of the particle when ¢ = 4. (4)
« Section 8.1

A particle P moves in a straight line.

At time ¢ seconds, the acceleration of P is
e*ms, where t = 0. When t =0, Pis at
rest. Show that the speed, vms™', of P at

time 7 seconds is given by
Ly s
y=5(e — 1)

(&)

« Section 8.1

EP) 69

@

A particle P moves along the x-axis in the
positive direction. At time ¢ seconds, the
velocity of P is vms™ and its acceleration
s -{;e'i'msﬂ. When ¢ =0 the speed of P is

10ms™.

4)

b Find, to 3 significant figures, the speed
of P when r = 3. (2)

¢ Find the limiting value of v. (2)
« Section 8.1

a Express v in terms of 1.

A particle P moves along the x-axis.

At time ¢ seconds its acceleration

is (—=4e2)ms~2 in the direction of x
increasing. When 7 = 0, P is at the origin
O and is moving with speed 1 ms~ in the
direction of x increasing,.

a Find an expression for the velocity of
P at time ¢. (4)
b Find the distance of P from O when P

comes to instantaneous rest. (2)
« Section 8.1

A water droplet falls vertically from rest
through low cloud. Water condenses on
the droplet as it falls. You are given that
the motion of the water droplet may be
modelled by the equation

(r+ 3)% +3v=98(r+3)

where ¢ is the time in seconds and v is the

velocity of the droplet in ms .

49(t + 3)* + ¢
20(t + 3)°

a constant to be found.

where ¢ is

(6)
b Find the velocity of the water droplet
after 6 seconds. (2)

a Show that v =

¢ By considering the velocity for large
values of 7, suggest one criticism of
the model.

(1)

< Section 8.1
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72 A water bottle initially contains 400 ml
of distilled water. The water leaks out
at a constant rate of 30ml per minute
and a mixture is added to the bottle at a
constant rate of 40ml per minute. The
mixture contains 10% acid and 90%
distilled water.

Given that there 1s xml of acid in the

bottle after r minutes and that the acid

immediately disperses on entry,

a show that the situation can be
modelled by the differential equation

dx 3x
dt ~ 40+1¢ @
b Hence find the amount of acid in the
bottle after 7 minutes. (5)
¢ Explain how the model could be
refined. (1

« Section 8.1

@

A particle, P, is attached to the ends of
two identical elastic springs. The free ends
of the springs are attached to two points
A and B. The point C lies between A and
B such that ACB is a straight line and
AC # BC. The particle is held at C and
then released from rest.

The subsequent motion of the particle
can be described by the differential
equation X = —49x.

a Describe the motion of the particle. (1)
Given that x=0.3 and v =0 when ¢ = 0,

b solve the differential equation to find x
as a function of ¢. (7

¢ State the period of the motion and
calculate the maximum speed of P. (2)
&« Section 8.2

206

@E/P) 74

A small boat is floating on the surface
of a river, tied to a jetty. The boat moves
up and down in a vertical line, such that
the vertical displacement, xm, from its
equilibrium point satisfies the equation

dx

dr?
Given that the displacement is zero and
the boat is moving at a velocity of Ims!
at time / = (0 minutes,

=-1.6x,1=0

a solve the differential equation and
hence find, correct to three significant
figures, the maximum displacement of
the boat. (7

b State the time elapsed between the boat
being at its highest and lowest points.

2)
¢ Criticise the model in terms of the
motion of the boat for large values
of 1. (1)

+ Section 8.2

A particle P moves in a straight line.

At time 7 seconds its displacement from
a fixed point O on the line is x metres.
The motion of P is modelled by the
differential equation

OX 2% 4 ov = 12c0s21 - 6sin 2

When 1 =0, P is at rest at O.

a Find, in terms of ¢, the displacement
of P from O.

b Show that P comes to instantaneous

®)

2

¢ Find, in metres to 3 significant figures,
the displacement of P from O when

t=7 Q)

d Find the approximate period of the
motion for large values of ¢. (2)
« Section 8.3

rest when ¢ = %
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E/P) 78

A particle P of mass m is suspended from

a fixed point by a light elastic spring.

At time ¢ = 0 the particle is projected

vertically downwards with speed U from

its equilibrium position.

At time ¢, the displacement of P

downwards from its equilibrium position

18 x.

The motion of the particle can be

modelled using the differential equation
d—“+ ..md—‘+ 20°x=0

dr? ds
Given that the solution to this differential

equation is x = e™(A coswt + Bsinwi),
where 4 and B are constants,

a find 4 and B. (8)
b Find an expression for the time at
which P first comes to rest. (2)

« Section 8.3

A particle P is attached to one end 4 of a
light elastic string 4B and is free to move
on a horizontal table.

At time ¢ = 0, P is at rest and the end B of
the string is forced to move horizontally
away from P with speed V. After ¢
seconds the displacement of P from its
initial position is x metres.

The motion of P can be modelled by the
differential equation

d’L d’l As: 2
de +2Ad + 10k*x = 10KVt

Find an expression for x in terms of ¢, s'\
and V.
= Section 8.3

A particle P is attached to one end of a
light elastic string. The other end of the
string is fixed to a point vertically above
the surface of a liquid. The particle is
held on the surface of the liquid and then
released from rest. At time ¢ seconds, the
distance travelled down by P is x metres.
Given that the motion of P can be
modelled using the differential equation

CF.’L' d_X i)
a2 + 6dr +8x=24

a find x in terms of ¢ (8)

b show that the particle continues
to move down through the liquid
throughout the motion. (2)
« Section 8.3

79 Colonies of angler fish and angel fish live

in an ocean cave sealed off from the rest
of the ocean by a thick wall of seaweed.
After ¢ years the number of angler fish,
x, and the number of angel fish, y, in
the cave are modelled by the differential
equations

dx
= M
dy
< =-0025x+02y (2)
a Show that ‘2“" <1 33—"4»0 0225x = 0

(©))
b Find the general solution for the number
of angler fish in the cave at time 7.  (4)

¢ Find the general solution for the number
of angel fish in the cave at time t.  (4)

At the start of 2010 there were 20 angler
fish and 100 angel fish in the cave.

d Use this information to find the
number of angler fish predicted to be
in the cave in 2017. (4)

e Comment in the suitability of the
model. (1)

« Section 8.4

An industrial chemist is examining the
rates of change of gases in two connected
tanks, 4 and B. Gas passes between the
two tanks. Gas also enters the system into
both tanks and escapes from the system
in the same way.

The chemist believes that the amount of

gas in tank A, x litres, and the amount of
gas in tank B, y litres, at time / hours, can
be modelled using the differential equations

dx

df_2x+“+l ()
dy dx —p+1 %k
37 = (2)
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d°x dx

F = a -6x=2

b Given that tank A initially contains
20 litres of gas and tank B initially
contains 60 litres of gas, find
expressions for the amount of gas in

each tank at time ¢ hours. (8)

a Show that

The tanks have a maximum capacity of
500 hitres.

¢ Comment on the suitability of the
model after one hour. (2)
& Section 8.4
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4) Challenge

1 Giventhatn € 7Zt, x € R and
M= ( cosh? x coshzx)
—sinh2x —sinh2x/’

prove that M" = M. « Section 6.3

2 a Asystem of differential equations is

given as
dy dx _
dr=dr Y

Given that y =0and x =1 when 1 =0,
show that y = sinh ¢ and x = cosh.

b Another system of differential equations
is given as

dp
a—-ﬁ—q

dg
& P
dr

—=p+2q+
Aripl At bl

Given that p = ¢ =r =1 when t = 0, show
that

r=e!3sint—cost+2). ¢ Section 8.4

3 The diagram shows the curve C with polar
equation r = f(f). The line / is a tangent to
the curve at the point P(r, §), and a is the
acute angle between / and the radial line
at P.

_x
0=5

Initial line

r

Show that tana = « Section 5.4

(@)



Exam-style practice

Further Mathematics

A Level
Paper 1: Core Pure Mathematics

Time: 1 hour 30 minutes
You must have: Mathematical Formulae and Statistical Tables, Calculator

1 The diagram shows a section of a curve C with parametric VA
equations
x=t+thy=t-t*+1, 0=sx=<375

The curve is rotated through 360° about the x-axis and the

volume of revolution formed is used to model a clay /’C\
pottery vase. :
Given that each unit on the axes represents 10cm, 0 X
a find, correct to three significant figures, the volume of
the vase (7)
b give one criticism of the model used. (1)
2 The plane 17, has vector equation
r(2i+3j-k)=10
a Show that the perpendicular distance from the plane I1, to the point (1, 4, 7) is a V14
where « 1s a rational constant to be found. (3)
The plane 11, has vector equation
r = A(i = 3j + 2k) + p(ai + 2j - 3k)
Given that the vector 5i + j — k is perpendicular to the plane I7,,
b find the value of « (2)
¢ find, in degrees correct to | decimal place, the acute angle between /7, and I7,. 3)

3 a Prove by induction that for all positive integers n,

1 2 2y 1 2n 2n?
01 2]=(0 1 2n (6)
0 0 1 0 0 1

1 k 4
b M= (2 -2 O) where k is an integer.

3 -1 1
i Find the value of k for which M~ does not exist. (2)
ii Given that M is non-singular, find M~ in terms of k. (4)
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4 A complex number z has argument ¢# and modulus 1.

a Show that z" - % =2isinnd,ne Z* (2)

b Hence, show that 8sin*f = cos46 — 4cos 26 + 3 (%)

5 An oil vat initially contains 500 litres of pure corn oil. The o1l drains out at a constant rate of
15 litres per minute and a corn oil and sugar mixture is added to the vat at a constant rate of
30 litres per minute. The mixture contains 25 grams of sugar per litre of oil.

Given that there is x grams of sugar in the vat after  minutes and that the sugar immediately
disperses throughout the vat on entry,

a show that the situation can be modelled by the differential equation

dx 3x

ar =" 100+ 3¢ “)
b Hence find the number of grams of sugar in the vat after 10 minutes. (5)
¢ Explain how the model could be refined. (1)

6 a Show that the locus of points given by the values of z satisfying
|z+ 12+ 51| =13
can be represented by the polar curve with equation

r=-=2(12cosf + 5sind) (4)
b Show on an Argand diagram the set of points 4 defined by

A={z:|z+ 12 +5i| < 13} Nfz: -7 < argz < -} @)
¢ Find, correct to three significant figures, the area of the region defined by A. (S5)

7 A scientific experiment looks at the concentration of glucose, dissolved in water, on either
side of an osmotic membrane. The glucose solution passes through the membrane in both
directions and also enters the system through a tube on the left side.

A researcher believes that the concentration of glucose on the left side of the membrane, x,
and the concentration of glucose on the right side of the membrane, y, at time ¢ hours, can be
modelled by the differential equations

dx

T 03x+02y+1

dy

—=-0.2x+ 0.3y

dr s g
a Show that 100 dr-: - aodi; +13x +30=0. (3)
b Find the general solution for the concentration of glucose on the left side of the membrane

at time ¢. (6)

¢ Hence find the general solution for the concentration of glucose on the right side of the
membrane at time ¢. 3

At time ¢ = 0, the concentration of glucose on the left side i1s 10 and on the right side is 5.
d Find the particular solutions to the system of differential equations. 3)

e By considering the concentrations on each side on the membrane predicted by the model
after 3 hours, comment on the suitability of the model. (2)
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Further Mathematics

A Level
Paper 2: Core Pure Mathematics

Time: 1 hour 30 minutes
You must have: Mathematical Formulae and Statistical Tables, Calculator

1 a Prove that
i 1 n(ipn + q)

Ao s DD B+ D+
where p and ¢ are constants to be found.

b Prove that, for all positive integers n,
f[ﬁ) - 2rf+2 + 331r+i
is divisible by 7.

2 f(x)=z*+az*+30x2+ bz + 85
where ¢ and b are real constants.
z=1+4iis a root of the equation f(x) = 0.
a Write down another root of the equation f(x) = 0.
b Hence solve the equation f(x) completely.
¢ Show the roots of f(x) = 0 on a single Argand diagram.

3 The diagram shows the curve C with polar equation

r=6sin20 0<=¢<?=

o=

——Ml"—‘t

The line segment A4 B is tangent to the curve at 4 and |
perpendicular to the initial line.
The finite region R, shown shaded in the diagram, is

bounded by the curve, the initial line and the line
segment AB.

Find, correct to three significant figures, the area of the tnigtal e

shaded region R.

4 f(x)=cosxsinh2x
a Find the first three non-zero terms of the Maclaurin series for f(x), giving each coefficient
in its simplest form.

(6)

)]
(6)
2)

&)

(8

b Hence find, correct to four significant figures, the percentage error when the approximation

is used to evaluate {0.1).

(2)
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Exam-style practice

5 Prove that L le+ Zdx=1Z 5)

6 A triangle 7" has vertices at (0, 2), (k, 0) and (0, 8). Triangle 7 is transformed onto triangle 7"
by the matrix

55
-3 5
The area of triangle 7" is 456 units?, find the value of k. (5)

1

7 i
) Vx4 2x + 2

a Find the mean value of f(x) over the interval [-1, 1], giving your answer correct to
3 decimal places. (6)

b Hence find the mean value of f(x) + 2 on the same interval. (1)

- -2 z_
8 The line /, has equation ‘r_l3 = y_2 == 3 :

The plane IT has equation 2x — y + 3z = 4.

Point 4 on /, has x-coordinate x = 4.
Line /, is reflected in the plane /T and the image of point A is 4’.
Find the exact distance A4’ (7)

9 The differential equation

%1— 2%+ 3x =21+ 15cost
is used to model the flow of water through a pump. x is the volume of water, in litres, at time
¢ seconds.
a Show that a particular solution to the differential equation is

x=T7+ %(sin: + cost) 3)
Given that the initial flow is two litres and the initial rate of change of flow is three litres per
second,
b Find the solution to the differential equation. (8)
¢ State what happens to the flow of water as  gets large. (1)
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CHAPTER 1
Prior knowledge check
1a 8 % ¢ 16
d = e 4 g
2 O
2 Ima
- 2+
1+
2 -1 8 1 2 Re
_I -
. o
3 4032
Exercise 1A .
1 a 3e" b 6es
c 4e"":'l' d V65 a“’"
e J29g 110 f 2»’(}94
— 1 _al
g 2vVZ2e# h 8e ¢
i 25
1. v3: o
2 a §+Tl b -4
¢ 3+3i d 43 +4i
i V3 1
e -3i f ——2-+2-1
g -1 h -3-3i
i —-4+4i/3
10z 107
3 a cns( 13 )+L‘=ll1[ 13)

3

b o]l )

C 5(GGS(E] + isin{h))

8
4 e = cosd +ising
e = cos(=¢) + isin

(1)-@2):e"—e"=
l_{elrf — i) = ginf
2i

" [
= ginfl = —(p" -
= sin z_l(L

Exercise 1B
1 Tm 7T

a nt'()ﬂ,ﬁ+u,mE b 3V5cos4d + 3i/5sin40
e 3i/2
i V3, 5r, /3. 5n
2 a - b 4coq7+14sn7
¢ -
3 a e b et ¢ 6e’ d 3/2¢"
4 a e b 2/2e ¢ 3ot
5a 6/3e" b (3et ¢ 18e7" d 6el

. 8
(1)
(=) = cosf — isin# (2)
2isin#

e (as required)

6 (cos 99 + isin90)(cos 40 + isin46) gl

-1

= = pOidiE-Tio

cos78 +isin7é g ¢

=g = cos 66 + isin 66

2e7, 27"

a 2et

b n=1LHS=(1+D'=1+1i

RHS = 2%¥ = s-"'Q(mSI +isin™ ) =2 (L + 1L)

14 4 4 V2 V2

As LHS = RHS, the equation holds for n =1,
Assume the equation holds for n =k, k € Z*.
ie (1+i)k=2"
With n = &k + 1, the equation becomes
(1+ 0% =1+ x (1 +1)=2%T x (1 +1)
= 2la'' x 2let
R LT S R
Therefore, the equation holds whenn =k + 1.
If the equation holds for r = &, then it has been
shown to be true forn =& + 1.
As the equation holds for n = 1, it is now also true
for all » € Z* by mathematical induction.
¢ 256
e” = cosd + isind, e ™ = cost — isind
So ee ™ = (cosf + isin)cosf? - isinf)
LHS = gi" = g0 = 1]
RHS = cos?# - i*sin*f = cos*# + sin*f
Hence cos?d + sin*f = 1

Challenge

a

b

n="1:LHS = (re")! = re"

RHS = r'e" = re

As LHS = RHS, the equation holds for n = 1.

Assume the equation holds for n =k, k € Z*.

i'e{ [reif.l}k = rkeii‘rﬂ

With n = &k + 1, the equation becomes

':."l? i.-r]k—l = {reiﬂ]k % ."’E'.i"= rkﬁitm % e i rk-lﬂifk.'-wl = rt-lﬂift-lm
Therefore, the equation holds when n =k + 1.

If the equation holds for n = &, then it has been shown
to be true forn =k + 1.
As the equation holds for n = 1, it is now also true for

all n € Z+ by mathematical induction.

Given n € Z+, we have: (re¥) = L o 1
rlfelrh’.f

= prg-inf
( re I:J] n

Exercise 1C

1

= IS =L )

a coshf -+ isin6d b cos12¢ +isin12¢
V3 1. 1 3,

¢ —?+51 d —E-f—?l

e 1 r i

a ev h o 2if ¢ oo

d e e o' f e

a l b -1 c 1

a (1+i}"=—4—4i b (-2 + 2i)* = 4096

¢ (1-i)f=8i d (1-i/3°=64

e -'----\‘il]"_ﬁln'i

r (-2v3 - 2if = 512/3 - 512i

(3 + V3i)f = -432 + 14413

-8 + 8iV3

-271

a e b 3

2173



_

9 Write ¢ + bi and a = bi as ricos# + isinf) and e
rlcosd — isind) respectively.
Then by de Moivre’s theorem,
(e + bi)* + (@ = bi) * = r'(cosnf + isin nd)

+ r*{cosnf — isinnd)

= 2ricosnd
which is always real.
Challenge
Given n € Z*, we have:
1 1

(r(cosé + isin))™ = =

" (rleosd + isin))"

by de Moivre's theorem for positive integer exponents.

1 5 €08 ne — isinnd

" r(cosnd + isinnd)
cosni — isinnt

cosnf — isinn#
cosnfl — isinnd

~ r*(cos?nf - i*sin®nd)  r'(cos®nd + sin®nb)
=r™cosnd - isinnf) = r"(cos(-nd) + isin(-nd))

Exercise 1D

1 a

214

(cost + isind)? = cos3d + isin3d
= cos*f + 3icos*#sind + 3i*cosdsin®d + i*sin’ @
= cos*f + 3icos*#sing - 3 cosdsin’d — isin'd b
= 0830 + isin36 = cos*# + 3icos’dsinf 3 a
— 3cosfsin®d — isin*g
Equating the imaginary parts:
5in3d = 3cos*dsind — sin*p
= 3sinf(1 - sin?#) — sin*y
= 3sinf - 4sin*¢
(cosf + isinf)® = cos5 + isin5#
= ¢os?f + bicos*dsing + 10i%cos*#sin
+ 10itcos®dsin®*# + Hitcosdsint@ + i7sin’#
= c0sH + 1sinb# = cos®# + Sicos' fsing
— 10cos*fsin®é — 10icos?#sin*f
+ heostsin®d + isin® 4 b
Equating the imaginary parts: 4 a
5indA = 5eos’ #sinf — 10 cos?sin*é + sin” ¢
= 5(1 - sin®*#)*sinf - 10(1 - sin*f)sin*@ + sin*#
= 16sin"0 - 20sin"# + 5 sinf
(cost + isin®)” = cos7d + isin7#
=¢0s’ 0+ Ticos"#sing + 21 1% cos #sin*0
+ 351 cos*sin®d + 351 cos?Asintd
+ 21i%cos*@sin®@ + Ti"cosdsin® @ + i7sin” ¢
= c0sTH + isin7# = cos™ @ + Ticos"dsing
= 21 cos"fsin?f - 35icos?fsind + 35 cos? #sintf
+ 21licos*fsin®f — 7 cosfsin®f — isin’ 0
Equating the real parts:
cos7fl = cos™d - 21 cos"@sin®*f + 35 cos*dsint 0
- 7eos#sin®d = cos70 - 21 cos0(1 - cos?)
+ 35c05*0(1 — cos*M?* = Tcosd(1 — cos*)?
=64cos™0 - 112¢c08"0 + 56 cos? ) - 7 cosd
Let z = cosd + isind 5 a
(z+1)" = (2cosh* = 16 cos*0
- 2t 4% + 6223)  4af) 4 5
= {24 +1i] +4('z"-+%]+ 6
= 2cosdd + 4(2cos20) + 6
16cos*t = 2cosdd + 42 cos20) + 6
= 2(cos4f + 4 cos20 + 3)
= €05*0 = ¢(cos4f + 40520 + 3)

6 a

ri(cosnd + isinnd) 2 a

Let z = cosd + isind
(z-1)" = (2isin6)® = 32i7sin%6 = 32isin’0
= 25 4+ 5z4=1) + 102*(=1) + 10z2(-L)’
+52(-9 (-3
=25 -5+ 10z- 2+ 3 -1
= (2% - 'l} - 5z - 'l,j +10(z-1)
= 2isin5# - 5(2isin36) + 10(2isind)
32isin®fl = 2isin5f — 10isin36 + 20isind
= sin"f = {-(sin5¢ - 5sin36 + 10sin6)
(cosf + isind)® = cos 5# + isin 5o
= cos®0 + "C,cos*dising) + *C.cos* 0 (isind)*
+ 5, cos? Alisind)® + *Cycosd(isind)? + (ising)"
= cos"f + Sicos*d sinf — 10 cos*#sin*d
-10icos*fsin?# + Scosfisinfl + isin®d
Equating the real parts gives
cos 56 = cos™# - 10 cos*Osin®f + 5cosfsintd
= ¢0s7# — 10cos*#(1 - cos*f) + Heos#(1 - cos*H)*
=cos’f - 10cos*d(1 — cos?d)
+ 5eosf(l — 2c0s820 + costd)
= 16cos @ - 20c0s* 0 + Scosd
0.475, 1.57, 2,67 (3 s.1)

Let z = cos# + isind, then 2cosf = z + %
i

{z + };] =12 cost® = 64 cos"
= 1

=z%+ ﬁz"(%] + 15:4(F) + 202“(%)

Y 157:2(%) + 62( ].r.) i (%)

-
L

(e

LJ + ﬁ(z‘ + L) + 15(.32 + L,) + 20
z8 z¥ 72

= 2cos60 + 6(2 cos4f) + 156(2 cos20) + 20
64 cos"d = 2cos68 + 6(2 cosdd) + 15(2 cos2d) + 20
32co0s"f = cosbt + 6cos4d + 15cos26 + 10
57 9 =

\ 2l g ML T
L cos Hd-‘J_g()+64\3

If z = cosf + isind, then 2cosf = z + % and
2ising =z -1

— AR 1\¢ 1
So, 22cos?f x (2i)*sin*d = [z B E) (z - EJ

(= -2 (-1 = (- 1) (- 1)

cf-ao -2

=z"—22*—z3+4—-17—-g-+—1-
z2 24 zh
=(z"+%)—2(z*’+%)—(zz+z—12-)+él

= 2c0s60 - 2(2cos4d) - 2cos20 + 4
So, 64 cos?fsintd = 2c0560 — 4cosdd - 2c0820 + 4
= 32 cos*fsin?f = cos6f — 2cos40 — cos20 + 2

i
18
o i . 67
32 b it 6144

(cost + isint)® = cos6# + isinbo

= cos®d + °C cosPH(isind) + °C, cosd(isinb)?
+ 0y cos*Aisind)? + °C, cos?# (isin #)*
+ "Creosd(isind)” + (ising)"

= ¢os"f + Gicos"#sing — 15 cos*dsin® i
— 20icos*@sin®t + 15 cos® fsin*d
+ bicosfsin®d — sin® ¢

m Full worked solutions are available in SolutionBank. ﬁ



Equating the real parts gives

cosOf = cos"# — 15cos*fsin®d + 15cos*#sin*# — sin"f

=c0s°f = 15cos*0(1 = cos*d) + 15cos* (1 - cos*d)?
- (1 - cos*#)?
=cos°f - 15cos*é(1 — cos®d) + 15cos*0(1 - 2cos*d
+ c0s*f) = (1 — 3cos2f + 3cos*d — costh)
=32c0s"0 ~ 48cos*f + 18cos*d - 1
4
b -::051’—8 ~ 0.985, cas'l’_g ~ 0.643, cos% ~ 0.342,
A (137 17
18 18 ‘ “T 18
7 a cosdf +isindd = (cost +ising)?
=cos? + dicos? @ sind + 61%cos®Osiny
+4i%cosfisin®d + i*sin*
=cos*d + dicos?fsinf - 6Geos?dsin?e
— 4i cosdsin®# + sin*d
Equating the imaginary parts:
sindf = 4 cos 0 sind - 4 coslsin* @
b Equating the real parts:
cosdf = cos*d - beos?Hsin?f + sin*d

sindf 4 cos’d sind — 4 cosdsin’f
cos4d ~ cos'f — Heostfsin?g + sint g

( 1
costy

( 14 )l_cus* fl — b eos?dsin®d + sin' )
costi,

_ 4tand - 4tan’e
1 - 6tan*d + tan*d
¢ x=0.20,1.50,-5.03, -0.67 (2d.p.)

tan 46 =

){4:;05“:‘? sind — 4 cosfsin®f)

Exercise 1E (o)
2n _ T -
1 a 14z+..+28'=% 11=exi 1
-1 1-1 t=a
(5}) P | ern -1 gitfitl
o T zml_]_{ei] -1
z=-1 |
i = A4 —2008—
=emf-ﬁ_1=_e-,@-_1__wn_pzn_ 2n
ei-1 eW-1 oh_oh 2isini
icos——
2n . ™
= =jcol
&;ml 2
2n [ £y 13
2 1l+z+..+212 211_1_93} _1_1"1=1
z_.] n 1 - l
e? -1

3 2= 2% = 26t =16
i bbb A, 16=1 15
z-1 (+9)-1 i

4 a C+iS=(1+%cos0 +3c0s20 + ...

+i(3sind + 5sin26 + ... |

u

a P+iQ=(1+cost +cos26 + ... + cos 126)
+ i(sin® + sin 26 + ... +sin128)
=1+ (cosf + isinf) + (cos20 + isin 26) + ...
+ (cos 126 + isin 124)

in18_
=14+ p" + @.Ei.'r - L"JIH = [e ] 1
gif — 1
13i8 130 13 o 13 _L3id
_et-q \WwTe? -6 ) _ (ee™" - ¢7%)
e = TR i = ifl i@
¢ 1 P‘péwpil el —p 2
138 . 138
g g eff(2isin—==) @%gin—==
b 9‘”‘3(9 —g 2 _ ¢ 2 ) _ 2
T 2isin? = P
el —p isin— sin—
o 2 2
(cos6f + isin6d) sng-
- -
sin—
2
13¢ f 13¢ t

= ¢os b6l sin——cosec 'S +isin 6{1?*,1[17('059('5

So, P= tosﬁﬁsm]—;ﬂ( Ube( - Q =sin 685111%( usm‘g

& Qzﬁzﬂz&ﬁﬁﬂﬁ
" 13'6°13'3'13'2"13' 3" 13° 6" 13
a C+iS=1+ (T)(c:{)sﬂ + ising) + {;){(:0529+ isin20)
+ ...+ {z]mnsnﬁ + isinnd)
=1+ [T}e"’ + ("21}92"’ + ot (::)e"w
=14+ (T}Elﬂ + ( )l’elﬂ}d {n}lem;n )
=(1 + e¥)r= ( o2 LT +e? ” = v”-”(zcnsg)

= (20053]1{)5%?‘ + 1(2(,052) sm%ﬁ

So, (= (2::052] (us%

. f ni .
z 08
1 S_ ( LDSz) qln—z sm—z no
E = e lan?
] nt f
(2 rnqz) m:»? cOSs )

a (2+e2+e")=4+2e’+2eM+1=5+2(e"+e"
=5+ 2(2cos8) =5 + 4cosd
b C-iS=1-3coso +isinf) + +(cos 26 + isin 26)
- +(c0s36 + i sin30) + ...

- — | 4 1 i 1 3
=1-zef+ 282 -cels .
- L i 1 iy 2 1 y i) 3
—]—EE +-2—2[U. ) —E[(-ﬂ] -

1 2 _ 202+e™

BT lev 2+e" (2+eM(2+e™)
_2(2+e™ _2(2 + (cosd - ising))
5+4cost 5+ 4cosd

_ 4+ 2cosfl - 2isind
B 5+ 4cosd

B L Linae 90 4 i air _4+2c0s# o_  2sinf
=1 +-3-[[.LI.‘391+- isind) + 3[605120 + 15111i9] + . So,C = % 40050’ S= E s dcosd
=1+éeiﬂ+_282j“+“': i : it .
3 1- %e“‘ 3-e Exercise 1F
. 3 33 — o) ) 3(3 — o) 1a:z= 131, =1, =i &
3 —glf (3 - ew]{g T E—ir.l} 10 - 3[&“ + e-iﬂ} h z= T % \-'2. + %i, o
_ 33 —(cosf — isinf)) 9 — 3cosd + 3ising ¢ z=3 3,3V3; 3 33,
T o amp SRt § ool Bl B Ez 21314
" - 3cosd ; 3sind z=2+2i,-2 +2i2-2i,-2-2i
sol=—"—""— 5= — , *
6= 10 6c0se " = 10 - Boos
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T

-] =]

-2

216

z=14+i,-1+i,1-1i,-1=1i
z=v3-1,2i, -3 -1

e 2 2w
i =
lm%:l + 151[1-47— (‘05.9?1 + 1‘51119'.'—;£
m)s( ——27—) N 1sm( 2;), (_'05( 4? ) isin(—%ﬁ')‘
ol )15

7= 2{(08‘("—)+l‘ill’l( %)}
2(909(37] +1qm(3")] 2((‘0%(?") +isin(

2{{:(15( 57)+15m 5"")
inF .

z= 2{0051
—,;[} +15m( )}
)

7))

i blIl

5

i

) 2{cos
2(cos + isinm), 2((:05{—-
2({'0%( 37) + mm(

)
12)

z=v2(cos 5 +ising5), V2 ( 34)
Z(mq(—%) + 15.1:1 % )

= vz(cm(«—) +isin(- Lz))

lon( 35 an(35). Bl ) 1)
Ao e ]
o=l ) (5.

4([(15({9 + 1b1r1(?g)) 4(1:(}5(-—11-%75) + isin(——lf‘%a))

1
o= 5*0”"1, 51'(11-’"". 5*(-!“"“5. Hig-2on
z =30l [Belsoi |\ Fa-230
z=y2eM7 7= Dol 7= [Fa-100 7 - [Fa-25T

P \.’rg-_ _]_»“'F§‘
Z= -§+?. 2, & §—1
= Im
_1,3,
2 2
+*
“‘
”
’

L

’

’

'

L}

< =
21 0 Re
.|
s
.
*
‘t
.“
A
_1_ V3,
2 2

centre (-1, 0) radius 1
o 2w 2T 47 4t
...—1 L{]“s( 5 )+1‘:111( 5 ) ((!‘a( )+1‘:1.[1( 5 )

v

z.+z£+zl+z4+z-={)

L'{]S( 25 ] + 1'7;111(

2: 2 ¢AT | igindT 4 mq( 2"')
] 5 5 5 5
+ isin(—25ﬂ) + cr}s{—%) + l%lll(—%) 0

m Full worked solutions are available in SolutionBank. ﬁ

2 27' A 4*1'
5
27' 2! 4m 4
+cna( )—ls‘m( )+cns ]*l‘im[ ) 0
5 [.5 5 5
=1 +21052—+2co E_D
.J J
{'052—7T + ('c:st =-1
5 7
6ar=40= ﬁ
" 3
b z=2e® \320*,\!29“ V2e~ .
Im A
..
vae?
"‘ “‘
" ‘\
l" .I
L *
o 4 ‘.
V2e b ] v
1] )
1] (]
AL L #
13 L
5 ! Re
1] m
A - =
* .
. L
\‘ ’l
“b r‘}
y2e B
..... T | R | ||
7 \20 12 \f29 Jaelz J2enz
I & i
o
v2e!
“’-‘ : ‘.‘
" ‘\
* -
Ll i‘
1xl o A
VZe 12 - i aT \
‘ 23 \
1] .
] ] o
: i ! Re
o‘ 2 2 _J
. S 2e 2
“ i
L3 -
. .
.. e
Tl i
VZe 12
= T
8 a r=v8,08=—
6O
2ni _
b w=4e%, w= 49 ) S = 49 9
nl ill Sirl
9. a e*.nn*.—l.e*.—l.e*

b Expressing as a producet of the linear factors:

B 1T
(z+ 1Mz - l][7+l}(z 5 21 z 5 + 21
(o Z e -

=(z+1)z2+ D(z2-V2z+ D(z2+v22+ 1)
=(z+ 12+ Dz*+ 1)
Therefore (z* + 1) and (z* + 1) are factors.

Challen ge

2al gl
a 1,0%,¢e3,6e9,09,e6"
[}
b Rewrite the equation as (1 + %] =1;
ket
Then 1 + -1- =e? for some k € Z, by a.

krl
So,2=e7 -1
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2= —= mi - 5 a -8 - 8i, 4(-1+3) - 4(1 +3)i,
§T-1 sHleb st 4(1-V3)+401 + s'%h 4(1 +V3) + 401 - V3)i,
i _i(cggk |¢,m.’_€ir.) ~4(1 +3) - 4(1 = V3)i
1 ie o : 6 6 Im
- kx kr k= 0
(.4 (215111?) 2=.mF I:‘rsmF 41— J3) + 41 + Vi
sinXT ¢ jcoskx T 8+ 8
ae 6 6 _ 1 ek *
25in&T L -4(1 + /3) -
6
1 1
=-gt3! “l( ) »
Re
s0 take k to be -1, -2, -3, -4, -5.
2 (1 +/3) +4(1 -3
Exercise 1G
1 a (04), [—21"-3-, -2), {2»"'_3., -2)
b (5,0), (- 5.,0), (0,5), (0, -5) s 7 ) - 4(1 + V3)i
4 47! 1{,“ 167‘) -1+ +3) - + V3l
C (vals 2-;1n15).{ 1./3), [ , 28in 1%
22 227 ( 287 28—: b 1280, -64(/3 + i), 64(/3 - i), Area = 122883
2c08——, 2sin——|, | 2cos=——, 2sin=——
( 15 15 ) v B 15 ) 6 Let the position of the ant be denoted by a + bi, where a in
Tr T the number of units forward and b is the number of units
d (2,2), (2 2 cos 15 12" 202 "mﬁ)‘ to the right from its initial position.
[ s S Iy In this notation, walking forwards one unit at an angle of @ to
(2" B Lm']_’ esinco- 12 ) the right corresponds to adding e* to its position.
(2\ % cos 12T 2.7 sin 15"FJ Since the angles are 0, ZT 37 and 7 the final position of
12° 12 the ant is: 74 )
197 . 197 3o ” - 2 (3
(zxZPmWZZGmW] I+P.?-'+P‘,+P‘J'_1+”+[&3'] (o3 :l(,“] -1
-
(2 3 c0s 23T 2y Zsmzq"r) y .
12 12 — x [Zi'-.m'hr) sindT
2 3.-1), [z(3+ 5v3), 511 + V3)), (3(3 - 5/3), 311 - V3)) = : L
3 JGelt [Ge T2 e"‘"'(2i5i11%) sing
Ima © sindn
Get? So the distance from its initial position is ) =
ESL sin~
9
0 R Mixed exercise 1

1 a e=cosd+isind, e = cosf —isind
e’ + e =2cos, so cost = %(e"" +g7)
b cosA cosB =1e¥ + e x %{ei" + %)

11 2
e = He™ + e Y)(e® + o)

=1
A

- %[eim.m 4 opiAE L glB-Ar e-lifl.n.rnl
am 'il[{eii.-l-h‘l + e—iEA+B}] + [ei|_~l—ﬂl i e—ii.-l—Ep}]
= %(2 cos(A + B) + 2cos(A - B)
4, dn _ €os(A + B) + cos(A - B)
----- g E ) 2
at % 2 n=1; LHS = ricos# + i sinf)
P Ye RHS = r'(cos# + isin#) = rlcost + isind)
) % As LHS = RHS, the equation holds for n = 1.
: % % \ Assume the equation holds for n = k, k € Z+,
' = i.e. z8 = rt(coskt + isinkd)
Re With n = & + 1, the equation becomes:

<-\.

f=n

T
=

4 a VIZe H-I. v12 e_;i, q\-"ﬁe;{;’i, iﬁe?i”
Im 4

‘ 4 _n =gl g
". ," V12e ® = r*(coskd + isinkd) x rlcos? + isind)
. & = r*!Y(cos kflicos# — sinkfisint) + i(sinkfcosd + coskdsind))
v e = r*Yeos(k + 1)0 + isin(k + 1))
4 _Bai by the addition formulae.
Therefore, the equation holds when n = &+ 1.

217



_

9 a (cosf +isind)* = cos 58 + isin b
=co0s*# + "Cycos*@(isind) + *Cycos*f(isin b)?
+ iCcos* B (isind)?® + °Cieosf(isind)? + (isind)®
= eos'd + Sicos'dsing — 10cos?@sin®f) — 10icos®fsin*d
+ 5eosfsin®f + isin®g

If the equation holds for n = k, then it has been shown to
be true for n =k + 1.
As the equation holds for n = 1, it is now also true for all
n & Z* by mathematical induction.

3 cos7x +isin7x

4 a 16 i )
b 256 Equating real parts gives
5 & Lotz= o050 < {cing cos 56 = cos’# — 10cos?#sin®f + 5cosfisiné

=0s'f# — 10cos*0(1 — cos?d) + beosO(1 - cos?d)?

1 =¢05"f - 10c0s* 61 — cos®*d) + Hcost1l — 2co8%d +
= = 27" = (cosf + isinf)™" = cos(-nf) + isin(-nf) cos*)

- = 16cos™ 0 - 20cos*@ + Scosd
isinng = 2 cosnf b -1,1(1 +/5) = 0.809, (1 - 5) = -0.309
10 a Letz=cosf +isin#

z" = (cos# + isind)" = cosnf + isinnd

= cosnd — isinnf

1

=+ == cosnf + isinnd + cosnf —
z

.}
b (zz . ﬁ) = 20860 + 6¢os 20

) e |
c a_4.‘1_4

d J cos’20do = _ﬁ% cos 6 + i—:cas 26)da
0

(2- %) = (2isin@)? = 32i%sin%0 = 32isin0

=z"+ 52*(—%) + ](]z:‘(—l]2

gL . 10 . -l 5“ -1 4 -ll
- E‘;sin&fﬂ%sinzs];:%g’ﬁ . B ’zz+(m) +1D££)_+1( z_}

6 a Ifz=cosf +isindthen 2c0s0=z+ 1 ' " z* z°
vl Z <ot 2)-sfer- 2] 1o

= 2i5inh#f - 5(2isin3f) + 10(2isind)

=z°+ flz +5C,2° [Zd)+’ ( ) 'f42(1] zl So 32isin®# = 2isin50 - 10isin3# + 20isind
10 5 1 = sin®f = - (sin 56 — 5s5in36 + 10sing)
=z25+522+ 102+ —+ 2 =t = T 5w
z =z P b 0,- =
1 1 1 6 6
(Z - z_] ¥ 5[2 +;) * lﬂ(z % EJ 11 a (cosd + ising)® = cos5¢ + isin5¢
= ¢0s8"f + bicos*fsing + 101 cos*fsin*f
=2¢0s50 + 5(2¢ 10(2 cosé
s r+ [2{'05!39} +Adexos0) + 101*cos®#sin®d + 5i'cosfsin'd + i°sin® 6
S0 32c0s%8 = 2cos 5f + 10cos 38 + 20 cosd = c0550 + i5in58 = cos’0 + 5icos*Psind
Ccos* = %{cus 50+ Heos3d + 10cosd) — 10cos?¥sin?g — 10icos2dsin?y
b + 5cosfsin®d — isin’g
x o e e 1 Equating the real parts:
7 a If'z=cosf+ising, tllu,:l 2isinfl=z - - 0550 = tos50 — 10¢os03in28 + 5 coshsin'e
So (2i)"sin"# = {z - E) = cosfcos*f — 10cos*d(1 - cos®6) + 5(1 - cos*)*)
668 ]] N T = cos#(16 cos?t - 20cos*d + 5)
="z { +7z (;] -z (;] b If cos50 =0, then cos@(16cosd — 20c0s?0 + 5) =0
I’ 422(i) " L.(:__z{l) N L If x = cos 6, then x(16x* - 20x* + 5) = 0 which has
A “\zt) 2P : 20+ /80 5+/5
: solutions ¥ = 0 and x2 = = , by the
= 26— 62" + 1522 qzo+ﬁ—£+i : 32 g
zr " z® quadratic formula.
1 - 1 | ) . i g T _ il
LI - 6|zt + = |+ 15[z2+ =] -20 Since = = C0S—
(z }( +z"] * .)(z + ze < 10 10
= 908 69 ~ 6(2c0540) + 15(2cos 20) - 20 must be a solution to x(16x" - 20x* + 5) =0
S0, —64sin®6 = 2 cos 60 — 12cos46 + 30cos26 - 20 Since & +0, ¢os? (10) Gl 18»-'5. Bt oHis Ahaice
b cos®d = J5(cos60 + 6eosdd + 1500820 + 10) of sign.
w
¢ 3 To find which, note that ¢ = % gives another
8 (cosd + isinf)" = cos6f + isin 60 ti d 5 A h.
= ¢os"6 + "C, cos  Olisind) + "C,cos* 0 (isind)* SR msﬁ mqﬁ YIOOKIng ar 1o Srap
+ "Cycost@isind)? + "C,cos*0(isind)* Hence 0 = -~ corresponds to the larger of the two
+ *Coeos(ising)® + (ising)" 10 5
= ¢08°0 + 6icos dsind — 15cos*@sin¢ — 20icos?Osin® 0 solutions and COSE(-I%) = 3‘
+ 15cos#fsin*d + bicosfsin®# - sin*# 3\ 5 -5 - 5 _ /B
Equating imaginary parts gives [ Uusz(l—g) = -8‘” ; ﬂUSz(l—g-) = —Slf =
sin6d = 6cos" 8 sind — 20 cos?#sin*# + 6 cosfsinf 5 4B
= 2sinfcos#(3cos*d — 10 cos’dsin’f + 3sin'f) cos (?S) +8‘.
=sin28(3 cos*d — 10cos*d(1 — cos?d) + 3(1 - cos?d)?) 3tand — tans
= sin20(3 cos*d — 10c0s?0(1 - cos?) + 3(1 - 2cos?d + cos'd)) 12 a tan3d = 1 -3tan’l

=sin26{16cos*f - 16cos?d + 3)
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b cotdg = 1-3tan®*¢ _ 1-3cot?d Challenge
3 tané - tan*f  3cot'd - cot?f Rewrite the equatmn as {1 # —) =1.
otig — Jeotd
N w Then 1 + % =e %5 for some & € Z, since it is a sixth root of
Jeot*d -1 .
unity.
13 C+iS 1k
=1 + k(cos# + isint) + k*(cos 28 + isin 24) So 5 R 1
+ kMeos30 + isin30) + ... 1 1 | ie—*ﬁ-‘-
=1 + ke¥ 4+ k22 4 k¥ 4 =1 4+ ke¥ + (ke¥)? = [ = = e = o
+{k{-‘g"”]3+.“ ed -1 el:{en _e ". J}(21!,[[’] ) 2s5in=t 6
I A o) = kr _sinkr s k_f
= T few Since [ke¥| = |k < 1. _ _1(('05 6 isink } _ _su e+ icos 6_ 1. llwtﬁ
= 1-ke? = 1 - ke¥ 25in k7 2sin K% 4 4 6
(1-ke")(1 - ke ™) 1+K2- k(e”+e") 6 6
_ 1 klcos# —isin®) _ 1 kecosf So the points lie on the straight line z = -5+ itfort e R.
1+ k?* - 2kcosf? 1+ k- 2kcosd
ksing CHAPTER 2
1+ k% - 2kcosd _ Prior knowledge check
SoC=— 1-keosd . 4. ksind 1 a 1098 b 10761619.5
1+ k- 2kcosd 1+ k* - 2kcost 2 a Use the following:
_E hil o, nn+ 1D(2n+1)
14 a 4»2[:‘%( 4)+ |sm( 4)) rg],hz :
b z=yZe®, /ZeH, T+, /Ze W, T A i"z _nln+ 1)
¢ lma re1l ) 2
and simplify to get the answer.
dans 2 b 10073
g ot i &y
','.3" ‘“.‘. 3 a -=3cos3x b Tt = dsin3z
’ *
: : & Exercise 2A
\ 0 :?z] Re 1a ;0+)-rr-10)=30+r-r*+n0=32n=r
L) L ”
Zr,‘.\‘ "'.' b gr = ?Er{r + 1) - %gr{r -1
e TEIS A o i 1
'z_{ r=1: gx1x2-5x1x0
r=2 1x2x3-3x2x1
15 a 2911”2912.»29?: r=3: %x3><4—,]§><3><2
b Ima :
B r=n-1: Ix@-1)n-1n-1)n-2)
e i e .. r=n: gnn+1)-3nn-1)
,-‘. 2 . "‘, When you add, all terms cancel except %ntn + 1)
v “\M * Hence > r= %n[nr. +1)
x I & i..‘ t‘ r=1
' T\ 3 oo P nin + 3}
',' o T Ee 4(n + 1)n + 2)
) 3 A 55 L __1 __nBn+5)
s, s 2r 2(r+2) 4(n + )n + 2)
£ 1 1 1
C L -’ 4 & - -
T P (r+20r+3) r+2 r+3
i o " 4
3(n+3)
1 1 (r+1l=-r rr+1-1) r
/ : 5a —- = = =
r:%.@:i R R T § TR TP ¥ T A+ DU (r+ 1)
i 1
d —— ; R
8 b n+ 1)
16 a (1+_:‘—%— 3)(1—_3\-’3'—%) 6 M +2)
b If 3 | 2 1 e
Il z, and z, are the two vertices above respectively, 1 .
then z, - z, = /3 - 2iv3 7 a Method of differences yields — 10 T which

n

So the length of this side of the triangle i — .
10n + 25

is soa=10andb = 25.
|2y — 24| = J32 + (-2/3)7 =3+ 12 =15

simplifies to

2109



b Forn=1, _1_ 1 = Assume true for n = k.
5 * 7 10 + 25
Letn =4k + 1, then
L+l -l k -1
s e :
imil2r+ 3)2r +3) 10k + 25 (2k + 502k + T)
2+ Tk+5 k41

T (2k+ D2k +7) 10k + 1) +25
Therefore true for all values of n.

2 1 1
8 Method of differences yields ('31' " 3. 4)

n(1bn + 17)
(3n+ 13Br+4)

which simplifies to s0a=15and

=17,

9 Method of differences yields (n + 1) + n* - 1* - 0*
=2n*+2n=2nn+1soa=2.

St e ialde ON

10 a Method of differences yields Ton+ 16"

soa=3b=12and c = 16.

on  3n-3
24n+16 12n+4

11 The general term 1 - 1
r or+1

s0 the terms will not cancel out, and the method of
differences cannot be uspd in this case.

12 Recognise this is L
r=11 [ 2}

b Simplify:

is a sum, not a difference,

and apply method of

1 1 1
it Simplify — + — -
differences. Simplify 5 + g 2 + 11+2m+2}) 0
3 2n+ 3 .

bt o L SO | =2andb=

0 ¢:lll'l4 2{&1—]](“4}2] staling a and o
« 1 1
13 2 2r+1 2r+5

b 0.0218
Challenge
a k=11 b a=11,b=48,¢=49
Exercise 2B

1 a ["x) = 2e*, "(x) = 46, {"(x) = 2%e*" = Be™,
fimx) = 2rg2e
b fix)=n(l+ x> fx) = nln - D1 + x)-2,
"(x) = nln - D(n - 2)(1 + x)"%, {*(x) = n!
¢ [Mx) = e* + xe”, ["(x) = 2e* + xe*, ["(x) = 3e* + xe”,
f"lx) = ne* + xe*
d Mx) =01 + 2, Px) =-(1 + 27 Mx) = 201 + 2)7%,
f(x) = (-1~ (r - DL + )"
dy
dx.lf

dy
J a —=3xcos3x x 2sin3x
dux

= 3n{_!2+3.r s Sny b e‘i

=6Hsinxcosy = 3sinbx

dZ d-l d-!

b -—5," = 18cosbux, o ~108sin6x, —= = -648 cosbx
dat da? dat

c 648

4 a flx)=2xe*-xie*

"(x) = (207 - 2xe-*) - (2xe~ - x207%)
=e 2 - 4x + xY)

I"(x) = e ™ (-4 + 2x) — e (2 - 4x + x?)
= a7 -6 + 6x - x?)

b x)=e (6 - 2x) - e (-6 + b1 — x7)

=e %12 - 8x + x7)

soM2)=e-2(12-16+4) =

_

5 a Given that y = secx, j—i = gecrlany
% = secalsec?y) + (secxlanxianx
= gecx(secty + tan®x) = 2secix — secy
b % = Gsectx(secxrtany) — secxtanx
= secxtanx(bsecixy - 1)
When x = 7, d'—_ (V2)1)6(2) - 1) = 11,2

5 ciy) d2y (dy)'
6 a — ( 2y—- 2L
a (J] dx ¥
i

dx? dux
‘!
b 2( d% 3—d o’ J)

dx'* dx  dx?
7a rm:%x(n = =
x+vl +x® vi+x2) V1 +a?

Soyl+a2f(x)=1
b Differentiating thiq Pquatinn LA A
V1 + 22 f(x) + —f(x) =

V1 + 22
= (1 +x2H)"x) +al{x)=0
¢ Differentiating this equation w.r.t. x
(1 + x2)"(x) + 2x0(x)) + (Pl2) + xf"(x)) =
= (1 +290M"x) + 3xfx) + L(x) =0
d '0)=1,1"0) =0, "0) = -

Exercise 2C

1a flx)=(1-2x)" = [{0)=1
fla)=-101 -2)2-1=(1-2)* =P0)=1
f'ay =-2(1 - 2)*(-1)=2(1 —x)* = M0} =2
Ma)=-(3 x 2)(1 = x)-*-1) = (3 x 2)(1 — x)-*
= 0) =
General term:
fYx) = rir - 1)...2(1 = x)F+ D = (1 - x)-irb)
= f(0) = r!

Using fi) = f0)+ 20z + 2 ¢ .. 4 L0,

20 r
(1l-x)'=1 +:c+%:cz+ +:T'r"+
=l+x+x?+. +2"+ ...
b fix)=yl+x=(1+20 =1M0)=1
f(x) = 31 + 2) = f(0) =}
Mz} = H{-1)(1 + 2)- = M0)=-1

f(x) = H-2)-2)1 + 1) = r(0)=2

Using Maclaurin’s expansion,

3,.08,
-.1+x—l+—x+?x METE A
=1+£~’~'_ x3
2 8 16
2 ((x) = psinr = l0) =1
['(x) = cos xesins = f0) =1

"(x) = cos2xesinr — ginxesint = (D) = 1
Using Maclaurin’s expansion,
esiny =1 4 g +Tglfxz+ we=lrr+daz.

3 a fixy=cosx =Mf0=1
f'(x) = -sinx = fM(0) =
f(x) = —cosx = f(0) = -
f"la) =sinx = "0) =0
f(x) = cosx = "0) =1

220 m Full worked solutions are available in SolutionBank. ﬁ
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511
=

10

The process repeats itsell every 4th derivative.

Using Maclaurin’s expansion,

1 1 [ 1y

COSX = l+?-12+:1-|-_t4 [2 ]TIEr
=1 —;—!2+';—:+ ([—2]]];3:”+
b Using cosx =1 - E+ qi wnh x= E
cosr=1-— ;; + 31;04 0.86605... which is

correct to 3 d.p.
e=2718(3d.p.)

In (£)=0.182 (3 d.p.)

|~ -]

B | 27
0%+ 507+ 5

2x - 22% + *:c - 4x* +
A
Loy

1+32+ Lf gt g

=

¢ x’-

s T 5 P
cns(x = —} = COSXCOSY + sinxsin™
4 4 4

= %{cnsx + sinx)
Ve

| 12 oxt x3 xf )
_:»2—((1 21+4I .,.)+(x 3|+"-T )

1 &% xd  oaf )
me ) pgaBa® o ®o
\_.-2[. T T 2

a fla)=01-2)In(l -2x)
()= (1 - 20° x 7=+ 2(1 - 2)(-1) In(1 - )
=x-1=2(1-2)In{l - x)
() =1 - 2[_(1 - 2) x 7=+ (D)n(l - x})

=3+ 2In(l1 -x)
b f(0)=0,1(0) =-1,(0) = 3, "(0) = -

2 L )
€ —X+353 -3

H]

a sinx= x—§T+———..‘=x—%x3 5" -
P = Ly 1 .4
COsXx = 1-21'1'1'"—..—1—:2'17 +-2':1- -
3sinx —dxcosxy + x
:3[x—i.r?3+ u“x' .I]—4[J:—%x“+ﬁx5—
L

= Zx - TagE” + -

b E

a f(x)= mbx —=— % (—-5inx) = -tanzx

b (0)=0,"M0)=-1,"{0) =0, {"(0) = -
-x* xt

2Tz

d ln(cos%) =24 =—In2
And by the Maclaurin series we have also

GlE)

In(cnsﬁ] BT

4 2 12
z ?..2
1:12*—(1 +9_6)

flx) = tanx = f(0) =

f(x) = sec?x = F(0) = ]

f"x) = 2sec*tanx = 0) = 0

M(x) = 4sec®xtan®x + 2sec’x = bsecty — 4sec’y
= 2lsecty + 2sectxtan?x) = M0) = 2

o+ X

f"(x) = 24 sec*xtanx — 8sec’xtanxy = (0) =
(x) = 24 sec* xtan®x + 24sec’x — 8sec’xtan’x
- 8secty = ™(0) = 16

So the Maclaurin series is

0 2 16
0+1x+5xd 3!.1:’+4l,1: e B i
1 2
—x+§x +1_"x +.
Challenge
a e*J'=]+.1f+‘E g: f:...
et xr’+l
ﬂ,-='—: arr [
i T s 1
rel A |
—_—] = = 1
11[!.1.'; l*r-l-li' ar l'!1'}1r-+'1
b IIl[]. +I]=I—%+%?___+[_“r4lx_+
e, =12 g, = X
rr e r+1
lun[a“' lm1| ot " (O I PO N ‘
a r—wl r+1 {—1}”1'.1:"| e
=l ——{ = 1xl
1 +?

So In(1 + x) converges for -1 < x < 1 and diverges for x > 1.

Exercise 2D
S i ‘
1a 1—1‘+-2——~6~+,.. valid for all values of x
b 1+4x+8x4+32‘t ... valid for all values of x
C {-3(1+:c+—2—+'%+...) valid for all values of x
d —1452—2—%—3~%4— -l=s2x<1
e ‘; féB ag‘;o 84:7120 .. valid for all values of x
f In2+ -2———8- =3+ —_<x:;_
2 3 4 iy
g hitedabatad g ¥ . &g
nn[+.r]:r2+3 4+5 X
Ml —a)=—g-F_ 2 2 B 1<x<t
2 3 4 5
ln[]“‘) ln[l+:-:]-In[1—x]=2(x+x—3+x5+...)
1< \ 3 5

As x must be in both the intervals -1 < x = 1 and

-1 =x <1, x must be in the interval -1 <x < 1.
b R
b x+?+_+ il =l CERE

¢ x=-%-0.4055 (4 d.p)

l +% ¥ 1
d ln1 = =-z-lr1[4]=ln(2}

and the series from b gives

B, [3)"

3 A8
Whll h is |r12 correct to 2 dp
: (22)*  (2x)° 42"
2T o ki 8 = —
3 e=1+2x+ T + 31 +. —1+211’+2£t+3+...
: (-z)* (=¥ & P
e =1 —x+T+T+...=1 x+?—g+
Soe* -e¢*=3x+ %.1:2 if terms in x* and above may be

neglected.
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4a 3xsinzx=3x(2x-ﬁi+ )

b f0.1)=8"8in0.1 _ 4403399

3 0.1
3 = (1 Ox®  27xt Using the approximation in part a,
s x‘( "2 tTg ‘) f{0.1) = 1 + 0.1 + 0.00333333 = 1.103333....
So we get that This result is correct 10 6 s.[.
3xsin2x — cos3x = 63:'*—41""—(’1 —9—xz+ 27::*) + 13 2, 16(sin2 2x) =16
§ S ) 3 a 5= 16(sin2x - cos 2x) = 16y
=-1+ 5222t + .. b y=-1+2x+28% 2% - 22t + ...
=N
Challenge
B g A T AT
- 3 4 Tt ES: a y=1+16%+36°
b 21n3+2j_£+E_£+ 3<cx<3 b 19.6years{35.f.] ¢ 2%
3 9 81 162 d As dis larger, the error in ~ is larger, so the
6 a 1-2424 2% 2x° approximation would be less accurate.
3 5 315
b Iz_x_ﬂ_'_E__ Mixed exercise 2
" T37 45 315 1a 2 W
7 p=%g=-1 (r+2Hr+4} r+2 r+4
175 1t | 3
8 a x+2x"+—— ke b ,E‘][r+2}(r+4} }‘(r+2 r+4)
b 1 . SR S B |
9 a (1-3x)In(1+ 2x) 3 4 n+3 n+4
e %xJ(Zx 204 B apry ) ___Tn’+25n
3 12(n + 3)(n + 4)
=2x - BxZ + 2;’1 - 12x% + 4 1 1
2 a = i
— (4r—114r+3) 4r-1 4r+3
3 gty 2 4 1__ 1 _4n+3-3
/ 2 3 4 : q | g ) J—E—S . = =
:(l +2x+{2x} +[2x} +[2.r] +..A)[.r—x—+..,) %{[Mu 4r+31 3 4n+3 34n+ 3
2! 3! 4! 3 in
4 K TR
(1 + x4 2024 320 +2i+“.)(x—x—+ ) . 3l4n + 3)
3 3 6 ¢ 0.00126
=.r+2.r?+ﬂx3+x‘*+ 3a (r+1p-(r-1)

¢ I+xZe*r=(1+2%)e>"

:(]+ xﬁ+{ )= J[.r] ...)(1_

I s B 8
0E -2 L

=(r*+3rt+3r+1)-(r*-3rt+3r-1)
=6ré¢+ 2
2 3. 4 n i "
I+£-I—+I—+H.J b Z[()rz-lvz}:62!‘2+2_2=2-'33+3RZ+3H
ik X r=1 r=1 r=1

n n {L ; : '
X ] SnﬁZrE+§_‘2=6L{r3+2n=2n1+3n*+Brs
r=1 r=1 =

Sob6d rP=2n"+3n*+n=nl2n?+3n+ 1)

r=1

=nln + 12n + 1)

Thi o P e it
8 45 48 So Y rt=1nln+ 12r+ 1)
b 1.711(3d.p.) ) 11 T .
4 . *( ”
11 a ersin3x };[r+1}(r+3} ,2‘1 r+1 r+3
(px)?  (px)? (3x)* _2.2__2 _ 2 _ nbn+13
=(1+px+ CTRRET +...)(31— 30 +) 373 nR+2 n+3 3m+2n+3)
pix:  pix? gy 5 Z{{r + 10 = (r- 1) = n(2n* + 3n + 3)
=(1+px+ + + )(Bx——+._.)
2 6 {“alc'ulate-
= TR 3(p* - 3)a? i (2r)(2(2nF + 3(2n) +3) = (n = N2 - 1"+ 3n-1) + 3)
Sl 2 Which gives that a = 14, b = 15, ¢ = 3,d = 2
= o = ¥ d.l
b g=-2 p=3% k=-3 r 6 a (2w
12 a etnx_— ary e—tnr =T x ellu‘-' - e dx”
e""ii[‘lx = h dﬂy = ‘_2]ﬂp1—21n32 = 2566|+|n.'|2'-'
o R st (] 256 ., _e
; . - 1 oL - 1_ g
(a2 8 N 2 ) AL (-
fla) = e 8 6/ is0 7 a (0)=5r0)=1
( : : (1 + e*)%e* —e*2(1 + e7le* _ e*(l — %)
2 3 2 e
=(1+x+2 424 )(1—13— ) b f(x) = 1109 =+ P
( 3 6 6 =0 (1+e%) (1+e9)
=1+a+ % ignoring terms in x* and above & Y +_;_+ % s

227

M Full worked solutions are available in SolutionBank. ﬁ
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8 a 1-8x* +"-1'- —iﬁr:".'.'f"+... 17 a [‘{I}=etﬁn.r=u"'lf;"“=e.r..Xe'i.;l;
b cosdx=1- 2sin*2x _(] P _,;3 }(] ol )
5025111221::1—r0q4x—812—¥x4+%x“+,.. B s TR R e
- 2 t
S0 §in22x = 4x2 - Loyé 4 12 xo 4 =1 +x+f2——+%+
s o X oz x g2
9 Using e* = l+x+2+ togte cand b 1 B+ =+
£2 ot 18 a flx)=Incosx flo)y =0
cosx =1 _?+ﬁ_"' £'(x) = —qu t £1(0)
o [1-%£.% -z N cosx -t -
@ = pl 2 M =pwp : ¥ pid rrr{x} —SB(' -1'- I'IJ{D] =_1
= p(] + (_-ﬁ) i %(-f.) + )(1 A AN ) f"(x) = -2 sectx tanx ["(0) =0
o Zx* 142 xzf g ["(x) = -2secty — 4sec?xtan®y  ["(0) = -
= a(l o TgtogT ) = (’[1 “ia g T ) Substituting into Maclaurin,
; xz x-l x’d xnl

10 -3a% - 227 - ... Incosx=(-1)=+(-2)=+..=-=-=+ ..

o 2! 4l 7 12
g T b Using 1 + cosx = 2cos2Z,

d o
12 a afﬂj In(1 + cosx) = m2c0ﬁ22—m2+21nma§
d B EE Lk L TR S [_L£2,L£4“ )
dx(1+x+21'+3|'+4'+"‘+r!+—(r+l]1+m) SD]H[1+LQ:-:.I]—II12+2. 2(2} 12(2}
_ 2x . 3x*  4x? (r+1)xr —m2_22_x_
=0+1+ 2'+31+4!+"'+[r+l]1+"' . N 4 96
i I_i I_r = pY J_ Ax —3x y 3z n—3x
-1+.1:+2‘+,3| .{.+r+...-e 19 a e 3(e* + e), —= = 9le™ + e),
[+ fP d R o 2
b -d—:E{bm.r] = dx(.r - -3-1-+E-— v (=1} ar e 1) + ) %:27{9”+e**-*},%:}il{e“‘—e“”]: 81y
=132 02 - 1].rM+__ b y=6x+9x%+ 3525 + ..
ET (2r+ 1) 2(3)en-1g2n-1
B xa T o o T
=1- el 3 - o+ (=1) [2,.}!‘., = C08X (2n - 1)
s il xt omt ArCY Challenge )
¢ E“"’”]‘d:(l 21 +4! 6' # ]tz i TN o SO S i
S 9 , ) e =1l+x+ P) + 6 2‘1’+ 120"
[2r+ 2)! , (ix)*  (x)*  (2)'  (ix)°
1 § 9 g e —— i
=N o=l T T e
2741 el (2r)! ¥ ob .
2r + 2)xr+t =1+4+ix=—"—=i—F+— +1
B A e
S LN
X%, & g e ; cosx=1-m 4 .,
=—(x—m+ﬁ—“.+l—l]m)=—sm:r % 25
13 1 (%2 _ % q'mx—.t—x—+x——
cosx=1- |2 -2 4., . -
il (2 24 ) 6 120
> 00—t = (1 - [EE 2, : iqinx=i(x~x—+x—~ )
T oS [2 Y e ’ 6 120 7
e FE ”( {__‘ B 5_‘_)) Match up the items to show e¥ = cosx + isinx
2 24
. 2
e 2](_(1_‘_1‘_4)) i CHAPTER 3
2! 2 24 Prior knowledge check
=1+ 7x? +241 * 1a 53+x2+¢c b (x2-2x+2)e +c
b x+x_+._.x 4 c -&ln“ + 3sin*x) + ¢
3 x 10x + y 1

14 1+z-42°-5a% 4+ ... 2 a -¢ = R —

3 Y x+ 4y secty

= ) s .

15 {"x)=(1+x)1 + 2In(1 + a)) Sa%- 11 b452+432 ('. 51_271
["(x) =3+ 2In(1 + x) x+ (x+2) 4Hx-2) X+ X+
() = —2— Exercise 3A

) 1a g b V2 ¢ 3
(1+2PIn(1 +2) =2+ 322+ e* + ... e o :
& v - 1} Tl — I3 L
16 a :c---x_2+":_H B e _‘,E’dx—ltl_l_l;liled-l'—],l{!,}[ﬂ Y
2 6 12 and e' — e as t — oo, s0 the integral diverges

b 0.116 (3 d.p.)
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10
11
12

13

224

b f%dx umj 1 di = Lim(2/% - 2)
(W LR i =

and Vi — oo as { — oo, so the integral diverges
L I
C f %d_x = Iim_[ 8x

V1 +a?

dx = lun[& 17+ 1-8)

and V{2 + 1 — e as [ — oo, so the integral diverges

U | . 11 . . o &
4 i?}d" a '&!‘r}f, —dr=lim [2/z], = lim(2 - 2] = 2
i 9 . |
—_dx =i dx o E —
b '!u2—3x Jl_H;lJu V2 3% llI'I‘I[ 3'»2 3.?5]“
im (273 _2 ) _2/3
—l}g]( - 3~2 3t) ==
J.an. i l J-l nd d= l I2 __._ﬂl
: f = lm = m at —
[ . Ve — tl 0, v"eI 1 i Vi

= lim(2/2 - 2/67= 1) = 2/2

a Integral converges; 2(1 +/2)
b Integral converges; 0
¢ Integral diverges

1

S ar-mm°

2 1 [ T | 1 =1
b .L,[? —ap 'rq-’[?w = 3:]],_ =Jm(3 - orog7) = 3
a se”+¢

i = 1 "] = i :E
b L redxy lun[,; llrn(,i 3 ) 3
a [lnx}‘ + C

2

b jlln.rdx llmjln—xdx lim ([lm])

and (In¢)* — e as t — oo, so the integral diverges
a alllnx)?-2Inx+2)+¢
b ['(nx)*dx = lim [ '(Inx)*dx
=1lim(2 - t((Int)* - 2Int + 2)) = 2
since ((Int) — 0 and ¢(Inf)* — 0 as t — 0, so the
integral converges
¢ Split ["(nx)*dx up as ['(nx)*dx + [“(nx)*dx
and show the second integral diverges.
I]I'm{ln x)*dx = lim _]I"(In:c]"dx
=lim ((Int)* - 2 Int + 2) - 2)
and {(lne) — eo, I(Int)?* — oo ag f — oo, 50 the integral
_ diverges
9VZ
-8
1
a tlanx is undefined at the upper limit x =%

b [‘tanxdx = lim L’tanxd:r = lim(-Incos?) and
Ry "y i
cost — 0ast— é‘- 50 =Incost — oo as { — %
so the integral diverges.
a sec’x is undefined at the point x = ‘?25 in the domain of
the integral
b Split ["secExdx up as I!")jsenz:n: dx + [“sec’xdx and
show the first integral diverges. i
_f"""sec‘*a:dx = llimi;rseczxdz: lim{tant)
0

and tant — co as f — % so the integral diverges

m Full worked solutions are available in SolutionBank.

14 The integral converges precisely when a > 1, in which

case its value is
a—1

15 a 1 s 1 - D
2¢2+3x+1 (2x+1Mx+1) 2x+1 2x2+1
in partial fractions.

dx = [In|2x + 1| - Injx + 1]}

g 1
So. [ gerrar et

i)
b In2 ¥l
Challenge
J e sin .rd:r-—[e‘- [1 cos 2x) dx

= ——P" + e :u e*(-2sinZx + cos2x) + ¢,

where the last step is done by using repeated integration
by parts.
So, ["e~sin®xdx = lim ['e~sin*x dx

1 ks ]

= lfi;n[ﬁ “{-2sin2x + cos 2x - E:]]r
= lim( L e(-2sin2¢ + cos 2t - 5) - (-%))
2

L

since e~'sin2t — 0, e~'cos2t — 0 ast — oo

Exercise 3B
1al b In2 c e
1, (1 +e" 4 et -2
2a g155) b o ¢ T
d Zlnit e 2.3
R T 2
3 a (-2,128), (4, 20)
b A
(-2, 128) y=1x)
100
(4, 20)
! 0 7

¢ A lower bound is 20 and a upper bound is 128,
sinee these are the minimum and maximal values
attained on [-2, 4] respectively

d 74
In3
Ly =
S06
5 T
6 —
4+ 87
i (2x—15;;x+2}=2x1~1+132m partial fractions.
3 ﬁ# _ 17,49
ko jtzx—umz]dx—ﬂ%
1, 49k
h zln 3 2
1 {4 4 512 _
8 a 3[xe-4)de =500 - 4] =
h G
3|
? 38



10 11 [*flx)dx = m, then
b—a

1 -l ; - 1 f L
E‘L (flx) + c)dx = = aui flr)dx + ["cdx)
=g

=m+b (clh—a))=m+c¢

1142

12 The graph of f{x) between 0 and 7 is the negative of
the graph between = and 27 and so the area under the
graph between 0 and 27 must be zero,

1
13 » 2 +5inx
b i Y cosx _ 3 1 I'
5mv (2 +sinx)* ™~ 57| 2+ sinxl,
o Dk & B =
= 5?1‘[-2 + m[‘@ + \3)} = 130?:[3 +4v3)
o i Iy
— - —— (3 +4v3
B R o H
14 a Turning point is at (3.7
-2a* - 5a - ¢
47
v
Exercise 3C
1 a 1 h o 1 & - 2.'{'
L+t -2t -z
8¢+l o 1
1+(@*+ 30?2 a/xi-1
9 Arccosx — arcsinx
y"ﬁﬁ

3 2
(x2+ 1)(1 - arcltan x)?

4 i(aalrcmsx+aa\rcsinx]|=— . 1 — + 1__qg
dx vI—-2x% 1 -2t
So f{x) = arccosx + arcsinx is constant,

=i _T =
f{0) = 5 ¥ 0= 5+ S0 f(x) = 5 for all x
2 2
5 —— b
V1 - 4x? 4+ x2
3 1
e ey d ——
V1 - 9x? 1+x+1)2
L= _,37:: f L
p‘lx£(2 - x9) T .
g eJ'(ar{:{::)s.t -— 1 ) —r-i& - sinxarcsinx
V1 —22 V1 - x*%
i x/2arccosx — X - ewmnf
vt 1+ x?
6 x+(1+x%arctanx

(1 + 2201 + x*(arctanx)?®)

dy, d?
7 [l‘y:amsinx.then—Jz 1 and 48 x

x 1oz dat (1 gyl
L A2y dy
So.(1-28)—5-2-2=0
0.1 =% ]dxi Idx
_43_ .5 {3
By=—3 %+~ 3
9 a Zarnta?x b —— '_1 :
1+x? V1 = x*(arcsinx)®

1
(1 +29(1 + (arctanx)®)

10

11

a

b

u

Ya ; ;
= y = arcsinfaresin x)
B
]
L]
L]
[]
H
:
I I >
-sin 1 0 sinl ¥
I
1
|
1
1
!
1
OO - . 8
2
YA
- y = arceos(arccos x)

............. 14

If y = arccosx, then siny = +,/1 - cos?y = /1 - x2,
Since arccosx has range [0,7] and siny is positive
If y = arctanx, then

1 1 P

secy T

cosy = —— =k
y1+tan®y V1 +a®

Since arctany has range (—g %} and cosy is positive

1
V1 + 22

on this range, we must have cosy =

Ify = arccosx, then secy = culsy = ?lc—

If iy = aresecx, then
|||||'] -

siny = +/1 - cos’y = +

secy

II.—l
=+ ILI!‘l — e

275
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Since arcsecx has range (0, %) U (% ;rr) and siny is

p(]‘illJVP on this domain, we must have

%mJ_,h,ll —%

Exercise 3D
_‘ 1 di = J asec’d
a+xt a’ + (atanf)®
[ T
y1 - 2° V1 - cos*0
3 a 3&rcsin%+ e

i | RS -
d(ﬁ-5+c- garctang + ¢

(4]

—f 4 ¢ = -arccosxy + ¢

b 4/5 arctan%+c

¢ arcsin® + ¢ d Injx +/x*-2|+¢

5
4 %a.r»::lan%.g +c
1 1 1 _1 . 2%
5 f*\w dx = EJ 1’; = Id_dx = E:;chsmF +e

6 a Z(arcmn?—jz-)

b Em(“ +”)
2 2+4y5

C ;(arcsm L + arrqmi)

g V7
7 f:“q = dx = [arcsin%}i
—drtsmi;—arcsmiéézgu%zf%
3.‘3::;“’ f1 1f§x3
;%Jﬁd JJ =du
2 3

L2 arctan(v3z) + —ln{] +3xY) + ¢

vt |
9 —aresin—-2/2 —x?+¢
Vv

10 4ln(x® + 4) - %arctang— +c

11 [flyde - fsidr_‘.%dx

6 - .):r- Vb = 5a*
__2[, 'idu . ;dx
=-% Ju 7 / oo

. N e~ SO B (J'E ) .
= 5»6 Ha mart_sm\ﬁx +C

12 a %ln[;ﬂr2 + 16]+%arctanz+c

1 x+5
b ZJ 27+ 16 lﬁdx ln[xz +16) + 4arclan4]u
In2 +
4( lﬁ)
] h 2-
€ 1 16
2 3z
13 9 7 —arctan— 9 +C

i

1 xZ l.‘l

14 | ———dx = | >sin*dd#
I. V1 = 4x* Jn 8

) i;{1 + cos2x)dd =
16 % 16

1({= V3 1
Tﬂa zq-ﬁﬁ”“‘m“

[:r + %qm 2x]u

Challenge
a4 arcsecy + ¢

b vx*-1-arcsecx +¢

Exercise 3E
3-x I 1
10(x2+ 1)  10(x + 3)
x4l |
xr+2) 3x-1)
dx+7 4
x2+7) Tx

2 Injx+2|- Iliarctan—ﬁatc

1 a

|2
3 a (x+2x-3x2+2)
v+ 2
T
1 1

2
# Ln(_£ ) Larcuan?
4lnxz+4_] 2arrtat12+c

-2 arctan (i_) +£
J

6 2x
b S 54ar01an 3 + ¢

249+ x+ 1 2l 4
[ J -1 dx = x—ldx_fx+ldx+fx3+‘jdx

=3 Injx - 1|
-1
v+ 1
7 a (x-4)x*+6) b

-2In|x + 1| + 4 arctanx + ¢

=In + 4 arctanx + ¢
2 __3
r-4 x?+6

¢ 2lnjx -4 - .lll—art‘tani+t

3
8 a ~In}%x=
> 3“I2x-1|“‘

1 s
b Split | iz gy wp as

1 2 1
£ - 2)2x - ”dx 4 j] &= 2)2% - ”dx and show
the qpmnd integral diverges.
1
—dx = e
f (x-2)2x-1) h"‘f G-20z-D>
[—ln I & Ilm zi 1‘ —1n1
and In 2‘ ~ [ — =00 a8 [ — 2, 50 the integral diverges
x+3  x- 2
18 xi + 6 Triral
Ty x_[3 x
2 ]+ X - arflanz 5 arrtanm +€
10 — ( 2! ) + —4—arot3ni +C
'r5 Vo
2 l-x 1 . ontm
11 T . oo partial fractions.
i 2 )
9% E @+ D@+ D

f]xd+ldx J.l.r +]d't f,]:riidx

0

I
. = _31 2 =E_l
= [arc,tanx 3 Infx* + 1) + Injx + llL S In2 +In2

=%[ﬂ+2tn2}

224 M Full worked solutions are available in SolutionBank. ﬁ
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12 a

Slx?+ 2
Challenge
a —Lin[%=4- 2“2 l b —Larcan¥2®t D .
4,2 r—4 4+ 2v2 Ve
Mixed exercise 3
1 a arctane™+c¢
b Split f it P" dx up as
w0 .] o0 'l
JW dr+ [ —er e
i 4]
f e e e llmf o + o da= lim[arctan e*]}
= lim(Z - o) =T —aretan0 ==
un( arctane ) 3 —arctan0 =7
R SN _m
Smnlarlyf Ty oxda= 4 50 J_m P dy = >
6/ 4
2 =|—=-2
Tr(v".% )
- 2 £
3 =] asin2xdx = —[— sin2x - 2x cnst] ==
Tf ? ary 1,72
2x 3 LE
4 a e b -Z-ﬂ.nm‘iz—+[
1 -5 -5
5a flx)= X =
? b (’2x+3'2+1 (x-1) @Cr+3)F+x-1)2
vx -1 J
~ 5 o 1
5x%+ 10x + 10 224+ 2x+2
b »24+2xr+2=(x+1)+1=1,
1
solfla))=| —— =1
0 sl |x2+2x+2|
6 a We say an integral ["f(x)dx is improper if one or
both of the limits are infinite or if fix) is undefined
at some point in [a, 0]
b It in undefined at x = 0 and has upper limit e
¢ T
7 —-V1-5x% + }—,Ls.arcsain VBx + ¢
Vi
8 a Use the substitution x = tan# and identifly
sec’# = 1 + tan®# so that the integral becomes
f"m“m 1d# = arctand
(i)
b i % i o«
9 a {In(l +4x? + yarctan2x + ¢
b L+ 2|n 2)
=1 S — )
10 a f —{)xf 3f G"I‘ —3arr..~.m(2x +c
32"«
b ?dx = [lar(:sm—] =
Jr: V4 — Ox® 3 2 0 6
i "
11 _dx = | sin*fldx = | =(3 - 4cos2x + cosdx)dx
J[: \,1 x J ‘[: 8[ )

3x 5x . 1
4x2+2) 20x%+2)7 4x

b l( 10 +31n(:t:2+2]+2ln|x|)+c

e L le - e Yaida] o-Litde - 778
~8[3x 2{11112I+4bll’14xJ 64[f-l:r Tv3).

Here we know sin‘x = g'[.'i - 4 cos2x + cosdx) by
de Moivre's theorem or by using the formula for
sin?x twice,

12 a T
8

b Lﬂx]dx=lli_1§[—]~arctanx-] = lim (1&1'{‘(::1[1.52 D):iﬁ

d 2
13 Jﬂxldx:j;dxarlfdx Jx+9x
; L
=2 In|x| - ; - drctall(,}} + ¢
14 a .r]i_x?:iz b Injx-4|- Edratan%+f

¢ Split _rf{x}dx up as _jfﬂx] dx + ["flx)dx and show
the first integral diverges. :
M) da = lim 1) dx
= li.m(ln [t — 4] - i_ (art:tani_ + ar-::tani_)
e 2 2 ;

v v ¥

and ln[L — 4] — —co as t — 4, so the integral diverges

15 a Inl

1 “

; i ”
b [ogdes [m|x2+1‘]
¢ -2Ind

Challenge

=S
—1115

a jI‘[.r]d:r '['x* x"+4:c] =% 4

fle) = ¢* - 2(r+4-4rfc-(]urc=u’]?

b Oneexampleisflx)=0forx =1 and flx) =1 for x > 1.

This has mean value § on [0,2] but the function only

attains the values 0 and 1.

CHAPTER 4

Prior knowledge check

1a 15633 by EaidS ¢ 1-13¢*
6 8

2 1.41(3s.f)

59 5667
g i
15

Exercise 4A
b 4rln2 ¢ -Z‘-(w-lnan

T T
In41 e 2—[1 In2) r ﬂ(2»3 2 ?3_]

m3(In3)*-6In3 + 4)
a (/3-1) b 97(/3-1)
win14

3

a x=0orsinx+1=0=2x= Uur3
T Qfﬂ'_
b _[_—1
241 8 )
1007 1007
78 5 b =7

8 0.237 (3 s.1)
Challenge

SR W I

J

Tru.[_‘.(:;in:c: = ig)_d.r = ﬁJ‘(% - %cos?!.r —/2sinx + % dax

=T Ix - %51112.1: +y2 {'.USI] 4 = g{r -3)

]

297
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Exercise 4B
1 a wfle-2e-te?+3) b iw(e®-1)
c %f].l’l.)—f- 16 d 7.—111:'—’
2a gr b #(2+3In3)
3n?
¢ w(4ln2-2 d ==
b2
3 b=7
4a b T
" . 10 e 4
5 w(ej«nT +6e° - 3)
2cos(y— T
. only=3
. LI—SBUQ - _m _m - w3
b T'[: 3 {y )dr,- (Lanl:l Lan( )) -
1 =
T2 iz b e
8 a By de Moivre's theorem,
sin 3¢ = 3cos*dsind - sin*f = 3sind - 4sin’d
sin 5f = Scos'dsind — 10cos*fsin’f + sind
= 5sind - 20sind + 16sin0
= hsind - 5(3sind - sin 30) + 16sin’d
= —10sin# + 5sin 30 + 16sinb0
= gin%f = L{l{}sinﬁ — 5sin 30 + sin 5#)
b rqm JdJ-—f[lemJ— Hsin 3y + sinby|dy
[ 10 cosy + BCUaSJ - —t‘nsSy
_m 43y a!)
- 15(8 ¥R
Exercise 4C
1 38_4rr
7
2a 23
b wet
¢ Inx=t=py'=t-1=lnx-1
d =ed
3 a x=1-sind = sinf =1 - x?,
y* = cos?f=1-sin?g=1—(1 -2 = 2x% — 2!
b (v2,0)
[y 77{-15,-' L-"Z:I
58
4a 07 b 257
3 _ 5
¢ tan® = x%, sec =y
sotan®d =sec’l -1 = x"=pyi-1
d -_TJuu—ndu_T-yw-ﬂ e
1
5 7 q
4 t" 2 ] - : Y -y
6 7| x*=dit=n| 41* x 2tdt = 8z | t*dt = 32x
fegpores] [
7 a {sin20+ %é} +e
b y=4sin2d = 8sinficost = y* = 64 sin®feosd
% = —cosec’t
1 T BT s i T
x-_\—_;::—&-g _"3_"’8_6
- f "y dx/dode = —64r J"'msmd(:
C -'éﬂfr2

2289

8 In7
9 27*

10 4=

T

J
11 a =lné6

b 1?{[[16-——%]

Exercise 4D

1 a 200m

12000007

b
7

2 5xIn4001 em?
3 a

4
5

i

1

2

o~ S ke W

10

a

a

a

a

b

cos34d

= cos(26 + )

= cos2fcosd — sin2dsinf

= (cos*f - sin®*f)cosfl — 2sin*fcosd

= cos*d - (1 - cos?#)cosd — 2(1 - cos*dcost
= 2¢08* — cosf + cosf — 2cosf

= 4ecos'd - 3({159

= cos'f = cose o m-! 30

500007 m?

m

3 b 864rm?

x? = 168in*fecos?t) = 168in20(1 — sin?#)

16l 1-(4]) - o

14

i e.g Patterned earring may mean that earring
requires less material

ii e.g. Wasted material upon transfer to mould

Mixed exercise 4

Ly P . e
Exsm2:c + 31,0521: + ¢ b :v.-(z+ 1)
de

Use integration by parts with 1 = x and e sec’x
1o get rrf x sectxdr = nlxtanx + In ['.i)!i:t?]i
[t]
it 1
=n|Z-Lim 2}
(52

54

In2)

r4lng - )
guo- 37)

et

a

a

-9¢* + 8e + 8)
y:_x.r% b &

120

5484
b 35

f xidy = rf cos*tdt = ﬁf:('.(lﬁﬂ[l - sin*t) dt

Ir.;f

Using the aubstltmion u = sint, this becomes

a

b

ﬁfl{l —u?)du =
L

4

sin3# = sin (20 + )

=sin2flcosfl + cos20sind
= (2sindcosh)cosd + (1 — 2sin*#)sind
= 2sinfcos’d + sind - 2sin*f
= 2sind(1 - sin*#) + sinf — 2sin*d
= 2sin# - 2sin*# + sinf - 2sin*f
= 3sin#d - 4sin*d

= sin*f = §sinf - sin 3¢

20007

1287

15

m Full worked solutions are available in SolutionBank. ﬁ
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Challenge
Rotate € by —— amlrlm‘kwme to the x-axis using the matrix

cos —# —sm - ~
( 4_- V2
sm(—E (‘{]‘”i ——) L
V2

?‘E(;z)=l(zz+2e.)

A 2y y2\-12 + 2t

VZ V2

So new parametric equations become

3= mil=
|

x=-L(2 + 20 and Y= ._lz[_,ﬁ! + 21

Ve v

y:O:»Tlf{-lr,uz.sJ:ozu:n,z
y

e ST “dx
Vx| [—=-t2+ 2:]) 9% 4t
j" (\.2 d.ﬂ
S T |
= — =2+ 28] (—

w [ (e + 20) (e + 2)ar |
2[%5 3t ae)qp =3 4_5]'
2 i

_ﬁ(sz 96+_1§)_ Zl6 "5 T3

3 ] 3

Review exercise 1
cos 2x + i sin 2x -
cos9x - i sin9x

cos 2x + isin2x
cos (-92) + i sin (=9x)
e.’h‘l
= !

=g =cosllx +isinllx

Hencen=11
2 a cosHf+1sin50 = (cosf + ising)’
= cos" 0 + 5i cos*d sinf — 10 cos' @ sin?#
— 10i cos*d sin? @ + 5 cos# sin*é + i sin® #
Equating real parts:
¢0s 56 = cos”# — 10 cos®f sin®*# + 5 cos d sint*
=¢os" - 10 cos? 1 — cos?H) + 5 cos (1 — cos® #)?
=16 cos™ 0 - 20 cos*# + 5 cost
b x=0.809,-0.309, -1
3 a coshf+1sinb50 = (cosf + isind)’
= cos" ¢ + 51 cos*# sin# — 10 cos* ¥ sin“#d
—10i cos?# sin*d + 5 cosd sin*f + 1 sin ¢
Equating imaginary parts:
sinHe =5 cos*d sind — 10 cos? @ sin*@ + sin" @
=sin®(5 cos*d — 10 cos?d sin*# + sin* )

=sind(b cos*d — 10 cos? A1 — cos* #) + (1 - cos® #)%)
=sin#(16 cos*# =12 cos®d + 1)
b 01,3 37 1,209 (3 d.p.) and 1.932 (3 d.p)
; el — p-it z-1
4 a sing=2"2" ifz=e thensing=2"2—
R
o 8'(_ 2i J
—L{ 5-.5z%4+10z-10z"" +5z-% = z-9)
32i
<. l(z -z _5lz2-2z% 10z - z-*])
16 2i 21 2i
=%lsin58— 5in 3¢ + 10sin )

1]

8

b : sin*#df = L [‘im 50 — 5sin 30 + 10sin0)dd
16

]

[-:cns 50 +
i)

al-

308360 - 10 cos# E
=30~ (-3+§-10)) =15

16

a z"=cos(-nd) +isin(-nd) = cosné -1 sin ng
"+ "= cosnf + i sinn# + cosnfl - i sinn# = 2 cosnd

b éicnsﬁs+ 6eosdd + 15 cos 26 + 10

¢ f cos’ 6 dg
]

gl {cns. 60 + 6eosd0 + 15 cos 26 + 101dg

25[( sin66 + & 7sin 4H+%am 20 + 1{)9
1 J‘.l'.l'
= Sr—0)l= "=
o Y=3
O +15

=1+ (cos#+isinf) + (cos2# +1isin2d) + ...
+(cos(n—-1)8+isin(n- 1))

= @b + eif‘ + Bz!b’ R - BHH-HJ’J
: ; ; a(l - rt)
Using the sum of a geometric series S, = - T and
HlrJ + p-i¢
C0$ 8 =——mm—,
2
C4iS = 1 — glni N “ e eIm’J]{l - e—:’r.'r]

1-e¥ " (1-e¥1-e¥
B ’l - eim’! e e—l# i ei{u—l]& _ ‘l e ElnH - E—l&' + [,.Lm—I]H
o l-e¥-e¥4] 2-2cosd
Equating real parts and using cos(-f) = cos 6,

1 - cosntt — cosl=#) + cos(n - 1)0
2 -2 cosd
_ 1 -cos0+cos(n—1)0 - cosnf
- 2 -2 cosh
Equating imaginary parts and using sin (—-#) = — sind,

C=

—sinnd —sin( - #) + sin{n - 1)#

5=
2-2coséd
_sind + sin(n - 1)# - sinnd
- 2 -2 cosd
e - L i M e AT e AL HE]
a z=y2ex, x-’Zein, V2e (2e 2, (2e 4

\,"EE_

a z =4ei-fj' 49i-"‘-_jiv 40-i‘.:_;_7
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b 29 =467, (46, l4e77)
:4‘Jelﬁ,4‘ﬁeri..‘4r}e—nlw

The value of all three of these expressions is
49 = 8

Hence the solutions satisfy z" + 2% = 0, where & = 18.

9 z=cosf +isind, where
= om(_m 9r  3r 7w
10° 10( 2}' 10 10 10
i =l 117i
10 a 2elé, 2e15|. 2& i 2e 1’ 2e 13
b Vertices of a regular pentagon, inscribed in a circle
radius 2, centred on the origin.

_dniZni 28 .-lxi
11 a ed,e 5,1,e°
41| z ol Zn Al
e i4+e i +l+eld 4ol

5,

_4:1_[ _w| 9111 7r| I:Z_!-._i:l']
=g 3\l +@5 +B‘J l'}"+('?“

anf 2+ _azi
=e'5(ezri_l)—e (t‘ﬂ ])—eﬂx{J:O
e -1 7

b (3.26, 1.64), (1.78, 2.40), (0.60, 1.22), (1.36, -0.26)
12 Using partial fractions,
2 2 2

(r+Dr+2) r+1 r+2
Using the method of differences,

2 - (2 = 2 1
=+ 1+ 2) ;rwﬂ r+2 n+2
2 _nt+2-2_ n
n+2 n+ 2 n+2

"

2_
2

=1-

13 Using partial fractions,
4 N
(r+1r+3) r+1 r+3
Using the method of differences,

4 A 2 2
Hir+1Mr+3) r}‘((r+1 r+3)

Ld. 2 _ 9 5 8 _ @
2

3 n+2 n+3 3 n+2 n+3
_ Sn+2)n+3)- 3n+3)-06(n+2)

3+ 2)n + 3)
nt+25m+30-6n-18-6n-12
3n+ 2)n + 3)

= 5n2+13n N nl5n + 13)
3n+2Mn+3) 3n+2)n+3)
Hence,a=5,b=13,¢=3
14 a PxL__r e+ Dir+ 1= rr+2)
r+2 r+1 (r+1)r+2)
:r3+2r+1—r2—2r= 1
(r+1r+2) r+1)r+2)
b n
2+ 2)
= B - 12 1
15 a ﬁx]_:l:+1 x+2+x+3

p 1__1 1

6 n+2 n+3

2r-1
16 ; .
b Rroay
b Using the method of differences,

n 2r-1 n 1 .34 4 4. 1
gr[r—ﬂé g((r—l]2 rg)_l’2 n2_1 n?

17 a Using partial fractions,
4 _2_ 2

Mr+2) r r+2

Using the method of differences,
4 i«r( 2 2 ) _2. 2 2 2

Ztr(r+2) &=\ re2l=17T8 nel B+l
—3- 2 2
n+1 n+2

_3n+Dn+2)-2n+2)-2(n+1)
- (n+1)n+2
_3n*+9m+6-2rn-4-2n-2
B (n+ Din+2)
_ 3n?4+5n  _ n3n+b)
T+ Dn+2) (n+Dn+2)
Hencea=3,b=5
0.0398
18 a Using partial fractions,
21 1
4r2-1 2r-1 2r+1
Using the method of differences,

=

n 2 n 1 1 3 _ B 1
§4r2_ 1 'r=.(2r—1 2r+ 1, ol 20+ 1
20
b &t
19 a A=24,B=2
b Using the identity from part a,
i{gw +2) =i[(2r + 1) = (2r - 1)9
241{;‘ + 1‘2 l' {(2r+1)3 = (2r-1)4)
Using the method of differences,
24ir2 =8ni+12r2+6n+1-1-2n
=8&n*+12n* +4n=4nn + 102n - 1)
ﬁra :—411{:3 +2n=1) ln{n + 1)(2n + 1)
= 24
¢ 194380
20 Using partial fractions,
1 1 1 1

e+ Dr+2) 2r r+l 2(r+2)
Using the method of differences,

1 =1’[“1___ T 1 )
r;r(r+1][r+2) =\2r r+1 2(r+2)
| 1 " 1
4 22n+1) 4n+1)
e+ D2r+1) =20+ 1) +(2n+1)
B 4n+1)2n + 1)

_2n*+3n+1-2n-2+2n+1
- dn+ 1)(2n + 1)

___2n*+3n  _  ni2n+3)
T dn+1D@2n+1) 4n+ D2n+ 1)
Hencea=2,b=3,¢c=4

21 a HHS:r—1+%— 1

r=Nrlr+ 1) +r+1)-r

r+1" i+ 1)
rr+1) rir+ 1)
nin?+1)
2(n+ 1)

210 M Full worked solutions are available in SolutionBank. ﬁ



u

22 1-.—L _ 33 a 1

3"{n+1] 2(5~2x1+c
23 cosr=1-% :-:“ I I_Z. neglecting terms in b The integral is infinite at the end points and not

2' 4! 2! defined at the point x =3, so split up the integral:
and higher powers (O | 2 q

£ g - som =L 2hﬂdx+frf 27
SINX =X = T5+ ==k, neglecting terms in 2* and 5Dl Vo -ex

Dl
higher powers # Js 5o 2x] g dx
1lsiny -6 eosx+5=11x - 6(1——) +5 g 1
2 Consider the integral [ = _[ 5 222 dx

=-1+11x + 3x2
A=<l B=11,0<3
24 LHS=Inlx?-x+ V+In(x+1) -3 Inx
=Inflx2 -2 + Uz + 1)) - Inx?

{22

st
2 (265 = 220 |

= ""‘(zrsl—zﬁ “551

]
2

5 1 1
AS{—:——z‘,-i—_—-.oo
2

-2t 10

Substituting —,5 for & and n for rin the series 1
7 Therefore, I diverges, so j ﬁdx also diverges.
In(1+x)= B X +—["“hlxr+ 34 1 { j
2 3 r T
P | (=5)2=2 ~ - (L 3x d
LHS_:-‘ sl + .. o 35 a Mean \..1111[3_5 - ZL - Dezr=3) X
25 A=1,B=-2,C=-3. D=1 Using partial fractions,
) , 3x 9 3
L_ 2 cdga B = =
26 A - GX+ 5L - At r-1D2x-3 2x-3 zxz-1
2 Apn 44y, 84 5
b 3=t g b+ Mean value:l_g (L?_ = )dI
5 2 h£+£+ 3_ 2x-3 x-1,
K=g Ty 2 12 =H 3 _ l]dx
28 a Letu=1+cos2x, then{(x)=Inu ;21_3 Hindls 5
gﬁ 2 i e = lElrIIZ,t =3)-In(x~ 1}]9
¥ 2
3 w_ldu_ 1 o =(§I[17—In4 - Eln]-lnl
e f’lu} dv adx 1+cos2x (-2sinzz) 2 ) [2 )
_—4sinxcosx _ -2sinx _ o, =(§ln?—ln4) —-(0-0)
2 cos?x cosx 2
b P =-2sectx ~1m343-linig-Lin343
2 2 2 16
f"(x) = =4 sec2x tanx | 343k
""(x) = -8 secx secx tanx tanx — 4sec? xsectx b §m 16
=-8secly tan?xy — dsectx 36 ‘¢ Mot valuﬂ= f:ixz(x"‘- 1)3dx
¢ In2-x2-x*+ ..
29 3 l[_(x ]tr
a0 T 2(12 |
| ; a1 ) 57122
= [(x3 - 1)4 = —(26)* - 0} =
31 a ln( = )+r: 24! ]' 24 3
3 —'f 3 p 114244
im [Lin(—* i 58 #
b [ mrp=lin “3] = fim [g 1[“3)]3 37 V2
38 5
[wm —-—)) 1ln- .
3 39 a y=larcsinx)?
= ]Lm( 3 3') 1 %ln%— I(;ei u=arcsinx and y=u?
1. 1 1 y-2uandd—“__1 =
=G—§h]§:§m2 du d '.1—-‘{:IJ
Y _dy du_, 1 _ 2arcsinx
32 Using repeated integration by parts, . g e A-xz ozt

JxPe*dx = —%e-f‘ + e

d
V1= 2 i 48 2 arcsinx
! dx

) af
J 2¥e ' dx = !imj xie2'dy = ;jm I—%e-"
A a1 Bzt

ctal-or)- (o) 0o b

d 2
(1-23 (d—i) = 4larcsin x)? = 4y

221



b Differentiating the results from part a implicitly with
respect to x,

dq)2 dy d#y dy
-2 (_- T s el O W
] *! drde?  dx
dy d2y
- xdx + (1 ]dxz =2
2 d
Sl A
- ]d = 2
40 a y=arctan3x = lany = 3x
Differentiating implicitly with respect to x,
gec? . 3
sec?y - =1
dy _ 3 _ 3 _ 3

dxr  secly 1+tan’y 1+9x?

b Using integration by parts and the result from part a,
V3 W3

fjﬂx arctan3xdx = 3xfarctan3x - fg 3xzx 3 _dx
5 , 1+ 9x?

= 3xZarctan3x - j ldx + f

—dx
b b 1+ 9x°

= 3x%arctan3x - x + %arcmnSx

4 oretany3 - Y3

va

1 ]
3x2arctan3x - x + —arctan3x| =
3 ],} 3 3

=Lz —3/3)

9
Let y = f{x) = arcsinx, then sin y = x
Differentiating implicitly with respect to x,
dy
cosy—=1
Vi
dy 1 _ 1
dx  cosy
b —2
V1= dx?
1. de 1
=—sgin# — =—cos#
€ x=5sind = r=oc08
P _x
i i 251n9 = I‘?-ﬁ
0, 0 =0=0

41 a

[I-siny V1

1

2

Atx =

Atz=0, 0=2Llsing

1 ¢ Lsing
J*Iamsmzx e j zem aresin (sin ) i -
o V1 — 4x? W V1 —sin?¢ dé

: l1-;i11 i x 0

- [ 'EW(%cus (J)d(.i = % f {:9 sin0do
[} i -

1 1 (0]
= —={ ot = | cosfdd =
4:‘9msﬂ+4fum<;6d

i o
“xaresin 2;
i f Ut I_%.g cosﬁ'q—%siuﬁr

A

-lﬂ' cost +i—<i|n-9

h V1 = 4x?
[ = T ) T e /3
_( 24G(lﬁb+4blll(j) 0= 8(6 mv'3)
42 Using partial fractions, 2x+1 _ 2;‘2 L A . 1c T
v+ .t(x‘+1} x2+1 x

2x + 1 _J‘(2—.1: 1) =J( 2 o5
x3+xdx— x2+1+.1:dx x4+ 1 ::5+1 x]

=2 arctan x —%lni:c2 +1D+Inx+¢

Hence A=2,B= —%

217

43

44
45

46 =

47
48

49
50

51

52

_

32+ ba
=322+ 5x-15

_ 3x% + by __A B
(x=3)x*+5) x-3 x2+5
= 3x*+5x=Alx* + 5) + Blx - 3)
x=3:42=144A=2A=3
x=0:0=15-38=8B=5

hf 3‘?2+5x d_‘[’:j( 3 4 25 )d:c
2% =32+ Dx—-15 x—-3 x*+5

=31In(x - 3)+/5arctanX + ¢

V5
Hence P=3,0 = /5and R = 1
IR
Em&“ et Y
4
a 12 b 9r2
73 - 47
a=2
a D:y(:my#ﬁ:t:ﬁ&;k:-k:%

m

2 ) ]
] V:ﬁf (y cosy)*dy = wJ y*eostydy
] (i}
T 2
=§Lyzi cos 2y + 1)dy

fyz cos 2y dy =%y2 sin 2y - le sin 2y dy

= %ya sin 2y + %y cos 2y — j%cos 2y dy
1

:Eyzsm2g+%y cr}szy—%ﬁng e

% %gﬁ sin 2y + ly cos 2y - %sin 2y + %yll:

_Tf{q_7 _ _’] )_L4ﬁ12
‘2((0 PR vY ) T e

V=

o
Hence a = T b= 3
In4
a Length scale factor 2 = volume scale factor 8

5 25
ki Snf(knu) dx‘BTJ 1+ag

(i}

4
- Sn[ﬁmu + 4:.:]]
(1]
= 87('34‘) In17 - 0) =507 In17
b The thickness of the vase has not heen taken into account.
a 0=(3-3eY=0=3-let=e/=6=y=Inb6
b 9.65 cm?
¢ e.g. Filament may be wasted, or the shape may not
exactly mateh the model.
a

Length seale factor 0.5 = volume scale factor 0.125

5
EJ 18sin? 2t costdt

]

T
—_ E & .z—- =
V= BL (3 sin 2¢) o dx
= EEF sin*2¢ costdt
b V=0x F sin? ¢ cos? L dt
]
:
= 9"'f sin® 1 - sin® t) cos ¢ dt
= ng lcos tsin® £ — costsin® ¢)dt

(]

= Orr [3sin? £ - £ sin® t]f = 9n(§ - §) = 9x[5) = Ewem?

M Full worked solutions are available in SolutionBank. ﬁ
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Challenge 1 1 -w( 1
b Vi =2 == [1- dx
1 a »nwill be of one of the forms 3k, 3k + 1, 3k - 1: a0 =3 [: TL 1+ xé)
= 3k o
g 2q1| 2l Ok l [ ) +1[ (1_, 1 ,)dx
1% 4 (5] +e5 w1+ezﬁki+e4m_1+l+l_1 "' Tk 1+ x®
3 - 3 -3 !
n=3k+1: Congmor -[ (l 1+x ) x
27 Sk+1 k42 . -
10 4 (%) +le%) 14 ezl oand] = [ )d.r_ llmf [1 S de
3 3 1+x
_1eefeel = lim [x - arctan x|,
. 3 N =0 - arctan 0 - lim(t - arctan ¢
n=3k-1: . Sl m W)
| 3= ety 062 . - As t — oo, I diverges, so Var(X) is infinite.
131 4 (0% g (% e g 0 x o
3 3 L J_r,l+x'¢dx=L'l+.r2dx+£1+xidx
1 pe-Pyioy x 1 o 2
..—-—-—g—-—-z[] nl+x2dx=-2-lln[l+x-}]0=-2—111{]+a-]
b Consider jth term of flx), ax/. . and similarly, R = dx = Lin(1 + 4a?)
; (1) + flw) + flw?) o 1+ 2
The corresponding terms in ————— are: 2
; . 3 SulimU T dx —J x.,d:c)
afly afw) afw?) o=\ 1+ 2t h 1+ x®
+ +
3 B L B o — =iln[lnl+4ﬂ) Linga =0
From part a, this expression is equal to a; if j is 0 or 290 L+ae) 2
a multiple ol 3, and 0 otherwise. s $ oy ¢ g
f(1) + flw) + Mew?) | ; ; Shepfore f +at ( 1+ a2
e B the sum of all such expressions o Y
for all terms in f(x), s0 is equal to the sum of all = j,, T4 x~ Jul + x—
where jis 0 or a multiple of 3, as required. l 0y q 1
i5 im v = Zlim|[Inl1 + 27|, which diverges
¢ {l+x]45=i[45)rf. g Ll+x~ 24 g fnfd +27 I e, which diverges
—+00, 50 11 X, i is
So the sum of the coefficients of powers of x that sz?ned - & in’[x]d:a: g
. . wi{4h
are 0 or mulliples of 3 is L”(Br)
From part b, this is equal to
[1 + 1}45 + {1 +u..|‘}“+{1 +w2]45 Cl'!APTER 5
3 Prior knowledge check
_ 245 4 (=) 4 (=) - 245 _ 9 1 0. 5'1*
- - T .}}‘"
i 3 2 2 66
5 V= wa( [x '3) di ?rrx i (l e l) ds 3 a Circle centre (0,3), radius 3
h A\l x? I ho\x? o gl I
m A
o i i 37
e {2l - 2
. Ao BN _1_3)
- !"E(’T[ l zz’]) 2%
AS!-—-W.%—-G&]Id%—rO,SUV:% 3
W LI |
& & = ‘1+I" i1+ -£l+x'¢dx
il o4
= ;22[ o dJ: 4 th 3 dx 0 Re
=A(lim [arctan:d?, + lim larctan x]“}
= Afaretan 0 - lim arctan ({) + lim arctan { — arctan 0 b 97_
= A(limarctant - hpl arctan (1)) y
= Exercise 5A
TV Ll ¢ (13,-1.966) d (/13,-0.983)
"6

Hence if V=1, then A =%

2217
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2 a (33,3 b (3/3,-3)
¢ (-3v2,3v2) d (-5V2,-5v2)
e (=2,0)

3 a r+yi=4 b z=3 ;
¢ y=5 d x2=4aynry=%
e r¥+y*=2ax or (x-af +y*=a*

e yt=d 2 _3a)*_9a*

f x+g—J.3aynrx+(y 2)_4.,

g (& + y*) = 8y* h (a® + %) = 2%°
R |

4 a r=4 b r?=8cosec2d

¢ r?=sin2d d r=2cosH
2 = 4 o h s
¢ = Tvsinze Bl sl
g f=arctan2 h r:gcosec(6+£)
: 2 3
i r=tanflsect + asect
Challenge

Consider the triangle formed by the two points and the
origin and use the cosine rule to find d.

Exercise 5B
1 a T
=3
. r=6
=0
Initial line
b

=0

0 Initial line

=0

d -
¢=3
; 0=0
0, 2 Initial line
i r=2sect

224

g==
2
|
3 I r= 3cosech
i g=0
O; fnitial line
|
=

= Jaap(f— L
r=2sec(t 3}

Ve =0
0 "f\fnitial line
-
Reg
! r=asind
o
3
! =0
0 Initial line
=7
g 2
r=all -cost |
f=0
2a Initial line
=

r=acos3f

|

=0

Initial line

m Full worked solutions are available in SolutionBank. ﬁ



Answers

r=al2 + cost)

0=0

3a TInitial line

r=alb+ cosd)

=0
Ta Initial line

r=al4 + 3cosd)

=0

Ta ﬂ]iljﬂl line

r=al2 +sind)

#=0

Initial line

r=alb + sinf)

#=10

ba  [nitial line

5ui

n
2

r=a(4 + 3sing)

4=0

Initial line

B=0

47 [nitial line

(#h Initial line

rf=a’sin20

s sl g

f=0

Initial line

=0

2 Initial line
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Answers

3 a Im g Tt
12
|z—12 - 5i| = 13 P
a’(m 33
s Zlr-%2)
L 7 a Tm
12 + 5i
L
|z-4+3i|=5
0 24 Re = >
Y I 8\ Re
b Cartesian equation is (x — 12§ + (y - 5)* = 169 —6
Convert to polar coordinates:
{rcosd — 12)% + (rsind - 5)* = 169 argz="1
Then rearrange this to get r = 24cost + 10sin# 4
4 a Im
b 35.1
lz+4+3i=5 8 a Imy
Re
Re
b Cartesian equation is (x + 4)* + (y + 3)* = 25 .
; : b 385
Convert to polar coordinates: 9 0.0966
(reosé + 4) + (rsiné + 3)* = 25 -
Then rearrange 1o get r = -8cosf — 6sind 10 0.79
\ Challenge
Exercise 5C 9 124
ma? 3ma? a k= it b iC
L B ‘
(i + 2)a? 42 Exercise 5D
N 48 d 4 a 2w a —27
1 (2a, m.(—',—') and(—.—’)
a’Inv2 . a’ln2 2a’n? &8 & 9
e —5 or T f 3‘ 2 a (9.15,1.11) b (212, 2.68)
2 2 4 = q.i".__(;. ~ e
g %{11ﬂ‘+24] 3 a (?,;0.421) b r=+ 9 cosecl
g 4 (Ya, +1.32)
2 Area =2 x EJ. a*(p + qeosd)*df 5 reosfl=3 reosf = -1 r=3sect r=-sect
B 6 (2a, T
- a"J (p* + 2pgcost + ¢* cos @) do ( 4)_
v 3+4y73
it e BT f{ i G 7 1
=a*|p*d + 2pgsind| + cos 20 +
Ip 2 l, 0 8 0.212

2yl

oy EEETY i
=Pt + —— [—sm 20 + 9]
2 12 "

aigin  2pt+gf

2 2

214 m Full worked solutions are available in SolutionBank. ﬁ
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Mixed exercise 5 7a
l 97702
8 c
2 a,b 43
=0
Initial line
r=2asech
b
=0
2a TIpitjal line 8 a f = %
!
E r=4cosf
: E 2
r=a(l +cosey ( (\ .‘::0
= .l . 9 4 Initial line
¢ cosa =" :)2— |
)
3 g=1 ‘
% r=2sect
: - 5T 92, I
7 r=3cosf b (2»2'4}. (2»2, 4]
v G
f=0 9 a (%a, %) b '—E'—H‘
- : - 1
Initial line 10 a y=2-1 b y=5
r=14+cosf . 11 a Im i
| |z-1-i=+2
4 -
Area = 27 2
rea =
[B x| (3 Zﬁ) . T i
4 ("‘.‘ T 6)' (“\' 55/ and (0.3) 0 . e
5a P
2
i g=T b Cartesian equationis (x - 1P - (g + 1)2=2
: 4 Convert to polar coordinates:
B o (recosf — 1) + (rsinf - 1)* = 2
" r ==a08 Then rearrange to get r = 2cosfl + 2siné
:. ' -‘i= 0 ¢ Im 4
: Initial line
' e - argz = -%
1 l') - _']'4_1_ A | .:
b 2 -
6 Bl 0 2 Re
L
r=all - cosd) ! d 3.59
\ 12 2.09
13 1.52
=0
SR Challenge

Initial line ; ) ——
x=reosf =v20cosf, y=rsind=y20sing

. ; dy =
: %: V2 cosd —v28sind, d—‘é =y2sin#+v20cosh
bn—y g sind +f#cosd
dx  cosf-#sind

Maximum value at (2a, )
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y G 5
Challenge
At =T the gradient of the tangent is A+n atonge
¢ -2 44— a A
; . 4 + .
So the tangent is of the form y = (4 )x +¢
-
- SO (T o®Y . ®®
Substituting in the point (4‘ 4). C= Y-
So the equation for the tangent is
(447 e
y_(ﬂt—nx.)+127r—4] 1
Rearranging, this is 2(z — 4)y + 2z + 4)x = 7° Y y \
CHAPTER 6 0 x
Prior knowledge check
1+ \'3)
1 In(—2
— — tan®x = sec’x — tan®xy = (1 + tan®y) - tan®x = 1
Ccos-x
3 J e*sinxdy = [-e*cosx]| + fuelcnsxdx
1l 0
- [—tl%’ms;r}[; + [ersinx] - f” e'sinxdx b -
= f ersinxdr = %[— e*cosx + esinx]’
1]
=gl e(-1)+e"(0) - (-1 +0) = 3(1 + &7
: = cosechx
Exercise 6A 4
1 a 27.29(2dp) b 1.13@2dp) e -0.96(2dp.)
5 o B=8 o - c £=1
2 ) e+ 1
3ai b 3 ¢ 2
4 x=1.32(2dp) x=-1.32(2d.p) 0
5 x=0.88(2d.p)
7 A
= 2cosh x
Yy = cosh2x e
0 X
§allx)emr b flx)=1 c -1<fix)<1
9 a A
4y =3tanhx + 2
R Rt o terrra .
0 x
J
rrrrrrrrrrlﬂ—.f;{.l. Q—. ....................... ';.
=1

210 m Full worked solutions are available in SolutionBank. ﬁ
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Exercise 6B ¢ RHS = 4cosh*A - 3coshA
1 . yA , Y e - R e o -
I i y = artanhx V2 ) \ o2 )
i : {EA + e-.-1:|3 = efi.-‘l + 3(::2.-16—.1 + 36.4ﬂ-2-1 + e-l-i
i i = o™ 4 3o + 3o + oM
; ; RHS = &+ 3e! + 3e*l + e _ 3(e! +e)
| : T 2 2
| = e — cosh3A = LHS
_]: :1 X c —9ainh[A=B) . . (A+B
! : d RHS = 2smh(—2 )wsh( 5 )
; . A-B —A+B A+l -A-8
| ; 22(32—32)92“3?)
| - . 2 2
| ] | A A A A AR, AR A, )
: : EEEz z_ez Z+E£ 2_9_
! : Ej—:(@'—[‘n+[‘ﬁ—[“}
2 WA = %[9! e) — 1(9,9 et
=sinhA -sinh
= LHS
2 a sinh(A - B) =sinhAcoshB - coshAsinh B
b sinh3A4 = 3sinhA + 4sinh*A
— R T T (o A+ B T (A=B)
y = (arsinh 2 ¢ coshA + coshB = 2¢ u«“,h( 5 )cush( 5 J
d h24 = 1 + tanh®A
ol 1 —tanhzA
e cosh2A = cosh*A —sinh*A
[4] T 3 a sinhx=+/3 b tanhx = :—; ¢ cosh2x=7
= 5
4 a coshx=v2 b sinh2x=-2V2 ¢ tanh2x E—%
o2 — 1 5a x=In(i)x b x=In3
3 Lety=artanhx. Then x = tanhy = — and |x| < 1. : .
e +1 ¢ x=In(]),x=In4 d x=In(3)
Soe+ l)x=e-1=0e%1l-2x)=1+2x 3+ 3 :
) e —ln(_ Y )x—ln4+ 17
=>G*-”:#ay:;}]n[;JrI)fnrmé1. 2 Eald) _
= x + JTE e tnl T2 35
4 a In@2+5) b n@B+22) ¢ L3 f x=In(=v15) g I—U-x—lﬂ( 5 )
5 a In(2+/3) b In(2+V5) ¢ ;in(4) h x=In(3),x=In3 i x=In(1+v2)
6 a In(<3+,10) b m(#) ¢ 3In(2+3) 6 a RHS = 2[{{e* +£+e"-‘])—-l =4(e* + e¥) = LHS
i 14y b In(3+2/2)
7 %1n(1j;)+éln(1_ ) Iny3 7 In(f+3/5)
E= 8 He has not applied Osborn’s rule in line 1 - correct
ln( 1+ x | ") Iny3 identity should be sech®x = 1 - tanh”x since implied
I T-= \' 1= sin? term; he has split the denominator of the [raction
=2 1+x)1+)=31-2)1-y =xy-2x-2y+1=0 in line 2 which is invalid; he has taken the reciprocal of
2x -1 both terms in line 3 - this is mathematically incorrect.
yx-2)=2x-1=y=
x-2 Gkt pr‘oof' 1 +tanh?x 2-5ech®x 2
Exercise 6C —tanh’x ~ sech’x  sech’z
1 a RHS = 2sinhAcoshA = 2cosh®x -1
— 2(&" - E"’)( e’ + e‘-") 9 a B8cosh(x + 0.693)
B 2 2 b 8
=3(6*-1+1-e?) ¢ 0.148,-1.534
- el'l = H—Z:'I
- 2 Exercise 6D
= sinh24 = LHS 1 a 2cosh2x b 5sinhbx
b RHS = coshAcoshB - sinhAsinh B ¢ 2sech??2x d 3cosh3x
= (ez-" - e‘-“)( e + e‘“) o ( et — g )( e — e““) e —4cosech®4x I —2tanh2x sech 2x
1 “3 ke Zu} 2 " ﬁf . - g e*{coshx —sinhx) h cosh3x + 3xsinh3x
_ B g pel gy e g gl el el gy g Y T 0
- 4 B 4 i %ﬂi Jj  x(2cosh 3x + 3xsinh 3x)
= A+l A=l i
= M k 2cosh2xcosh3x + 3sinh 2xsinh 3x
o8 | p-AB) I tanhx m 3a®coshx®
= 2 n 4cosh 2y sinh 2x 0 sinhx e
= cosh(A - B) = LHS p -cothxcosechx
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2 y = acoshnx + bsinhnx 14 a y =tanhx, tanh(0) =
S:I'ferermate with respect to a: 3_!,-‘ = sechtz, at 0 tj_y -1
d—"r = ansinhnx + nb coshnx df N 4
d'f: PP —-2sech’xtanhx, at 0 3 “{ =0
"; = an®cosh nx + bn®sinh nx df x d
- n?(acoshnx + bsinhnx) d—‘{’: -2sech?x + 4sech®vtanh®x, at 0 E{ =-2
d_!'f: = nty Now use a Maclaurin expansion to obtain the
da® approximation
11/8 , 13/ b 5.23% (3 s.f)
: Vi
3 (%ln(m 5 ) 15 a y=artanhx, artanh0 =0
12 dy dy
PY _ otronch xsi . Y- a0l =1
4 T 2(5cosh 3xsinhx + 3sinh 3xcoshx) dx dx
' d? d?
5 a L— % 5::2.1:{1—.‘(1}'2,&10 y::D
VAxE—1 Jr+ 12+ 1 gf da* N
3 1 9201 -2+ Bl w2, at 02 = 2
¢ 3o o d - T 1 I ( ) ( ), s
Y i d
o _; X __:{’i = 8x(1 — 237 + 162(1 - 2%)* + 48241 — a%),
Va1 Vori -1 at03¥ _o
g 2xarcoshax + .—f'i—— h zl_ a5 dx*
e, e d"’ = 8(1 - 23 + 48x*(1 - 2 + 16(1 -4 + .,
i 3x% arsinhx + —— & 5
1 vt + 11 at0 dxu: = 24 since remaining terms all involve x
b7 N arcoshz + JrE — arsinhz Now use a Maclaurin expansion to obtain the
k ihl;- arcosha sechx tanhx aiﬁi?ximation
. c x+ix
2n+1 b
I arcosh3x + _3£ = 121
V92 -1 16 x+w—x +157%”
= areos oshy = d
e By (masuasig m?n_f_[_’_‘_;_hy__ x - 17 a d_y = cosasinhx — sinaxcosha
i sinhy = Jeosh?y -1 = /x% - 1 dfy
1 — =-2sinxsinhx
So a;[d.[‘( joshx) = T gf
o _t,f =-2cosasinhx - 2sinxcoshx
b y=artanhzx, then tanh_; =x dx?
[ar Jp—— ; ; dy : ; RSy
— =sech?y = 1 - tanh?y = 1 - a? —— = -2y + 2sinxsinhx — 2sinxsinhx - 2y = -4
dy sechy 4 dx Y Y ¥
d 1 pdned
So —i(artanhx) = T T
dx{ ) - b 1-zxt+ a0 c (-4) An=d
d X x
7 Using the chain rule, d—y =% L 3)=3 2¢ - Challenge
& I—(e—) =& 1-1a%+ 2ot
dy 2
So (4 — e*}-= = 2e7, as required. :
; de 4 Exercise 6E
8 Eiﬁ:(] + 39, dzy=2x[ué][1+x3}‘-’=-xil +x2)i 1 a coshx+ 3sinhx + ¢ b sinhx -tanhx + ¢
?i?: dx? ¢ -sechx +¢
E = —x[2x{—5&—;){1 i _1;2)55] -1 +x04 2 a jceosh2x+c
= 3x2(1 + 29 — (1 + 29 b 35inh(§)+c
So (1 + xt)d_y + 3r g “: + d_y 3 a arcoshx+yVx*-1+¢ b V1 +2%-3arsinhx +¢
Lginh* 1
= 32 “”}_ {]+IJJd_3le1+IH}A3+“+I2},:=U 4 a gsinh :c+.‘r.* b jlncoshdx +¢
g _2arcoshx 9 ¢ x(cosh2x) + ¢
(x2-1)7 2*-1 5 a %ln(2+3coshx}+c
10 25y - 25In5 = 169x - 156 b lanhx+%lanl12x + ¢ or tanhx-%ser.hzx+c
dy o .
e y=-Y1, | AE & nld + yT5) ¢ 5x+ 2lncoshx +c
dx /3x? -1 2 6 ixcosh3x - Jsinh3x + ¢
12 a 1+3x%+ g b 8.7 x10-°% 7 a Leey ;:c.+ ¢
q -l . Ay 2ntd o o
l-iax"'rx +13"T m hil‘ +iu(3' L

m Full worked solutions are available in SolutionBank. ﬁ
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¢ ﬁe-ix_%e—u"‘_slﬂ?x_%e-z_r_" e
or ysinh4x + {sinh2x + ¢
8 1-1
9 a 451111123: ‘ZI +C
b —gl;r + 32smh 4x + ¢
¢ sinhx + Zsinh®x + l';irlh"':l: +e
In2 i In2
sh2( %) g = L {wshx + 1Ddx = Lsinha + 2
10 E cosh (2)dx 2j“ I ]
_ EinE == {}—InE 1 -
_(72 +In2~{D+{)])—zh12+ 3
=4(4In2 +3)= Y3 + In16)
x Larsinh | 2%
11 a armsh(?) + ¢ b .arsmh( 5 )+ ¢
Wi x .
12 a Barsmh(i) ru'cmsh(‘b ) + ¢
5 X 1 aX
13 a 2dr(‘,utsh( ?) b dr'-,mh( 4 )
14 0977 (3 s.1)
15 a In(l ++2) b In(4)
16 Vx/1 + x — arsinhyx + ¢
17 0.824 (3 s.1)
18 [va?-4dx= [V4cosh?u -4 x 2sinhudu
=4 [sinh*udu =2 [(cosh2u — 1)du = 2[%3in|12u = u] +C
= 2ginhucoshu — 2u + ¢ = 2eoshuveosh?u - 1 - 2u+ ¢
=gxVa? -4 - zan".osh{%) +e
19 a f 1 g I dx
2¢oshx - sinhx (e + 1) — %{ef + )
= f — L —dx= f 26" g,
e+ e e + 3
LHS = 2 -2 __26 _pyg
2e¥+2e"+e" -0 e+ 3eF e*+3
b Acumt:m[ HI) +
V3 v
20 0.360(3 s.1)
21 a armsh(‘r;2)+r? b arsinh(x+3)+¢
.I'
c \J1Oarpmn(M)
10 NG
- 9x -4
d Eamosh(T) +C
22 a %arsinhlz:r -3)+e b %armch(zx; 3) +c
23 0.400 (3 s.f) o
24 In(2 + 5)
} # &}
1v3xt—bx+ 7 39 -1 +3
Usingu=x-1, thiq becomes ’
e o ( V3 u)l
= —larsinh
V3 [I .u +i_: x-"3 2 il
& (\311 [3u* )I"
7 In .|I s +1 L
_—Em[ks +V3+1)-In(0+1)) = —Blnia +V3)
'\r
26 a -In3, In2 b In279936 - 10
27 Volume = n_‘.lsinhzx dr = Ef][cushEx - 1)dx
(] 2 (1]

= %[%sinh 2% — :l'][: = g{sinhE -2 -sinh0 + 0)

2 -2
& ?I"(g_:f_ = 2) =

2
A e’ g =il

Challenge
1 2*-2x+ 2 =1 +sinh*@ = cosh?®#, %% =coshf
Suf 1 1':hc:j‘r.ns;hqﬁl o
(2% - 22+ 2)s cosh?@
%= fse{:h?.qdﬂ =tanhf + ¢ = sinhf +e
cosh@
Vat-2x+ 2
2 a %sinh(2x2)+% e b jtanh(x) +¢
Mixed exercise 6
4 13 15
1 a T b o [ 1
-12-13x
Y=12x-13
3 RHS = sinhAcoshB - coshAsinh B
_fet—et) (eP 4 ef) [et4 et [ef—eh
=555 - (55T
g8 _ g | gd-B _ g-dA-B B @B M _ pA-R _ a8
B 4 E
= 2[(_\_.4—5‘ = e—.-1+B‘] = E.—1-R - e—m-m
- 4 B 2
= sinh(A - B) = LHS
2tanhlx
4 RHS = ———2—
1-tanh*;x
nt
2tanhlx :M
2 e+ 1
covel o fef—13%_ (6 + 1P —(e" - 1)?
1-tanbtde =1~ (E2g) = EH00S
__4der
(e* + 1)*
- 2e1-1)  (e"+ 1F _(e* = 1)(e" + 1)
MBS =Sgrd T e
= ez;r L_¢ :29"1 =sinhx = LHS
5 x =m[%],x= In7
6 x=In(2)
_14 + /305
- I:m( 14 ?203)
x=In(l +v2)
8 a YA
y =6+ sinhx
i = sinh 3x
S
b 6 +sinhx = 3sinhx + 4sinh®xy = 2sinh*x + sinhx -3 =0
= sinhr=1=2x=Inll++2)
sinh(3In(1 + v2)) =
so (Inl1 + 2], 7] is the point of intersection.
9 a AR=12, a=0.405 b 12
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10 a 4sinh(x + 0.693)
b x=075(2d.p)
c 0.75(2d.p)

11 2sinh2x

VvOx® + 1 vat+ 1
o d 2x(arcosh2x + %)
Jat —4 |

13 dy _ 2arsinhx f__!-i= 2 2xarsinhx

dr T+ de? 1+2% (/T4 )

Sdfy dy
S = v e
o(l+x }d_r"+xd.r 2
i 2.1:.§.rsmlhx " 2x:a.rsmhx _2
V1 + %7 vl + x%

which cancels to 0.

14 a ﬁ—i = Ssinhx — 3coshx b (In2, 4)
2cosh 2x

ysinh?2x — 1

dy
16 a e cosxcosha + sinxsinha

d4y,
dx{ = 2cosxsinhx
d* . )
d_{ = 2cosxcoshx — 2sinxsinhx
P
d'y ; ] .
Fr i 2cosxsinhx — 2sinx coshx - 2sinxcoshx
—2cosxsinhx = -4y
Lism ok
b x+gx° -4z

17 2x+Lx%+ 6Ly5

0
18 a=2,b=1,¢c=16
sinll + /2]

10 cosh 10x — %cush 2x + ¢

19

= o = m

e —Jx+c

20 Area on graph is

n 10 o : ) 9
Larr=sl 5;',-('214, b dx = sfarsinh 5

ey Y

h

i
= barsinhY - 5arsinh0 = 9.5944...
So area in real life is 960m? (2 s.[).

21 ﬂr‘SiI‘ih(Ig 1) +C

22 a %arctan{v’ﬁe‘] +C
3

b Use substitution & = 1 = 3sinh .
Then integral becomes
jlm:l"hl q Sinh "+ 2

———— X 3coshudu
5 v9cosh*u

arsinhl

arsinhl
- f (9sinhu + 2)du = [9coshu + 2u],
il
= (9eoshiarsinh 1) + 2arsinh 1) — (9cosh 0 + 0)
Since arsinh 1 = In(1 + y2),
9cosh(arsinh 1) = 9cosh(In(1 + 2) and the integral
simplifies to
9y2 + 2arsinh1 = 9 = 9(/2 - 1) + 2arsinh 1

23 a 59.5° b 8.82m?
24 a ;In(4+/14) b 6.12
25 6610em?

26 a (In(3 +/10),0) by 227

Challenge
oa 0o 2
f sechadx = 2f sechx dr = 2limfr—‘mdx
Gl 0 £ 5] sechx
Using the substitution « = tanhx, this becomes
2lim jlmnm - 1 —du = 2lim [arcsinu]l,”"'
Eemody Wl - i
= 2limlarcsin(tanht))
= 2arcsinl =2x X =7
arcsin X3
CHAPTER 7
Prior knowledge check
1 y=lx-1)e"+¢
2 yr=4-x"
3 a -3In|50-2t|+¢ b —tln|cos(4x)| + ¢
Exercise 7A

1 a y=2"+c¢wherecis constant

A
y=x"+3
y=x*+2
y=x%+1

3 iy = xF
y=x-1

1 y=x"-2

1

@

N\

S

-2

=y

AN

b y=Ae" where A is constant

A Y = e y =26
/ y=e*
3
2

_///’r
0
s Ve

y=-3e= Y= =2

2

247 m Full worked solutions are available in SolutionBank. ﬁ



Answers

¢ i =Ax* where A is constant
'L

- x%= ¢, where ¢ is constant

i = —2x°

y-x=4

e y=sinx + ¢, where ¢ is constant
Y

I y=Asinx, where A is constant

Yy =sinx He=

y=sinx+1

%,
y =sinx
y=sinx-1

y=sinx-2

2s5inx

Yy =-sinx

Y =-2sinx

'
=

o1
=

dy xclx

v

J‘ Zx
J

Iny = %Ln{x" = 9} +e

y=eYx’-9
yz = p%(x? - 0)
Let & = —e?, then y* + ka? = 9k

by +5x2=45

c

=

¥+ 5a* =45
k=3
X
_1 C _ 2r 2 x
y=gsinx+ 3 b y=xe*-e*+ce
Y= 3x¢ usmx+uusecxd i = xef + cx
- - .'12 o
;—l[ ) r Y= 50+ o5
g=Z N: b y—0
=14l
5,«‘—1+x+1_2
1 1
142
*itas
1+l+l,)
Xz
i -
y_]+x X2
Y

x

lnA[:c+ 1) Inl—ﬁ—{x +1)
(x + 2) 3(x+2)
b y=—F"7""—"—

Inx Inx

24L3



7 a y=ge°+ce® b y=-cotx + ccosecx
¢ y = xec‘nﬁ.r + Cerngx d y = 32.1' + Fc.\
e y=|(%+c|cosx f y=Llinx+&
Y=\ s =% ¥
1
g y=xlnlx+2)+ox h y=lx+cx®

i y=(+2)Inle+2)+clx+2)

; R e S | [
-l y_F I“e +F
1w Ty A
8 U=E[‘} —?e +F
1 4x
9 y=-_1 ,4x
# 3xL+
- (a2 o [
10 a y=50+ 1P+ oy
= lfa2 P 2
b y=g@*+1) @I
B -
S Ejr_1+L-se(::t:+1.a.1‘l.1:
- R [ - cosx
b v=14 e Y= 1 ¥ 1 dinz
12 y= 2{_.05311[ .t‘+c)
13 a J:El‘mhl"r h y=ﬁﬁinl:r—l
14 a y=sinh(x + ¢)
b y = sinhx
YA

y = sinh (x - D —_|

A
=Y

y =sinh(x+ 1) y =sinh(x - 2)

15 a y=Acosx + sinx
b y=-3cosx +sinx
¢ = P=>y=fl><0+1=1

2

x-g—t::-y Ax0-1=-1

50 (E' 1] and [7 ]] lie on all possible solution
curves.

bx
16 y=07 +¢

Exercise 7B

1 a y=Ae™+ Be> b y=Ae* + BeH
¢ y=Ae™ + Be¥ d y=Ae" +Be*
e y=A+Be™ [ y=Ae"+ Be‘z‘
g y= Ae ™" + Be> h y=Ae 4 Bel*

2 a y=I(A+Bxe™ b y=(A+ Bx)e™
¢ y=A+ BI]IE' ¥ d y=(A+ Bx)e¥
e y (A +Bx]9 * f y=(A+Bre”
g y=(A+Bre™ h y=(A+ Br)e*

_

3 a y=Acosbx + Bsinbx
b y=Acos% + Bsin9x
¢ y=Acosx + Bsinx
d y=Acosgx + Bsingx
e y=e*Acosx + Bsinx)
[ y=eAcosy + Bsinx)
g y=e'"Acos3x + Bsin3x)
h y=e*Acosix + Bsinix)
4 a y=(A+Bxpe™
b y=Ae* + Be™
c y = e (A cos3x + Bsin3x)
d y=(A+ Bx]P"x
e _; = e'(A coavx + Bsin vx]
f y=Ae¥+ BP
5 a i x=Apttnl-o 4 Balk-ti-1
ii x=e"Asin((9-k2)) + Bws{{a? k2t
= (A + Bt)e™
b i x = e*(Acos(V51) + Bsin(V5t))
ii x—0

6 TFrom auxiliary equation:
am= o (using quadratic formula)

* = dac (setting discriminant = 0)
¥ = 1A + Br)e™

d_y = ae“ (A + Bx) + Be
dx

dy

dxl!

Substituting these 5 relationships into
dz dy
d =+ :*1—— + ¢y

yields a I‘E‘bl.l}l, of 0, so (A + Bx)e™ is a solution

7 Substitute y = Allx) + Bglx) into differential equation:
alAf"(x) + Bg'(x)] + blAl(x) + Bg'(x)) + clAllx) + Bglx))
= Alal"(x + bf'(x) + eflx)) + Blag(x) + bg'(x) + eglx))
= A(0) + B(0)
=0

= Bae™™ + e (A + Bx) + aBe™®

Challenge
Ae™ + Be' = Aefre?t 4 Berreis

=e™{(4 + Blcosqx + i(A - B)singx|
SetB=A* sothat A=A+ piand B= A~ pi, \, p e B,
Then A+ B=2)and i{A - B)=-2u
Hence setting A = %C and p = —%D gives the required result.

Exercise 7C
1a y=Ae*+Be™+2

b y=Ae"+ Be* + 2+ 3x
¢ Y =Ae* + Be¥ - 2e¥
d y=Ae™ +Be™ 1
e y=(A+Br)e*+1+x
I y=(A+Bxler+4sin2x — 3cos2x
g y=Acos9x + Bsin9x + fe*
h y=Acos2x + Bsin2x + %siux
i y=e"Acosxy + Bsinx) + 3 + 8x + ba?
J ¥ =e"(Acos5x + Bsin5x) + e*
. T
2 a —x£~§x+g i
b y=Ae*+Be+ 1x*-1x+ 45
3 a Ae™+ B
e ..._.. _.I... ..._.]..I_
b y=Ae"+B-ga*+ 52" -2

YA m Full worked solutions are available in SolutionBank. ﬁ
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4

-
1

6

y=A+Be*+ 25 - 3a% - 3¢
a C.F contains a term in xe*. Results in setting up
equation in the form of e* = 0. Not possible.
R |
A=y
= (A + Bx + zx)er

oS =

4k kit
4r KL

a y=Ae'+Be+ - b

b y=2t-1

Challenge
y = Acosx + Bsinx + (x - He>

Exercise 7D

1

2
3
4

=

Lr=TNE~ BN I

10

11
12
13

b y=e¥—e¥4e
T

b y=2- 9‘2‘+ 562

a y=Ae™+Be™ +ef

a y=A+Be¥+je™

y= t'1_",,4.; + ﬁe?: -1

a y=Acos3x + Bsin3x + 2sinx

b y= (:0&1539: + 2sin3x + 2sinx

a y=e(Acosy + Bsinx) + sinx

b y=sinx(l - o)

a x=Ae' + Be* + |

x=e+ e —gint

a z=Ae¥+Ble*+t%e* b x=
=4(cos2t +sin2e + 1)

a x=e'Acost + Bsint) + 2+ 2t + 1

b x=e'sint+1+2t+Forx=e'sint+(1+ 7

a y=Ae + Be* + 3xe®™ b y=3e" - 3e* + Jxe®

b x=e+e¥+!

1 43342
[£+§J..]e‘

1 .
Y= 18 sin3x - Gnns 3x

a r=egt-g%
b ‘iﬁlung d— =0 gives [ = —ln? then substituting

2 2V3
this mto x=et- e gives x = =

Z
Since %T‘f- < 0, this is the maximum.

Mixed exercise 7

1 y=2sinx+ccosx
2 y=5+c(l-2%)
3 y=-2,°¢
3 p= 5t x
4 y:%x +%
5 y—é+c9
6 y=2r+cxyl -2t
ke* . a3 k! e \OT
7ay-;l 5+ e b y= n+lp +ce
8 y=sinx + Acosecx
9 a jy=e"cosx+Acosx
b y=e‘cosx—(1+e’)cosx
10 y=—5(3sinx + cosx) + {5e
11 a y=ﬂ1-sﬁhnﬁ h y=(_}=:n.-ilu—l
2(3e2 - 1)
12 =r——
¥ et 4+ 1
— Al i \-5 \'q
13 y=e¢ 08 =5~ >
14 y=(A + Bx)e™
15 y=A + Be¥
16 g:cnskx+%sink:r
17 y = e*sin3x
18 a k=3
b y=e={Acos3x + Bsin3x) + %u”-f
19 y=Ae* + Be~ + 2xer

20 a y=(A+ Bx)e™
b They are part of the complementary function,
¢ k=2andy=I(A+Bx+ 20%)e*
21 y=sin2t + 2cos2t - cos 3l
22 a k=1, u=2,21=3
b y=Ae*+ Be¥ + xe*™ + 2x + 3
23 a y=4desintr+4+a+3
b A_s.t—mo e — 0,50 4e sin
24 y=2e™ +L(cos3x - sin3x)
25 a :c Ae-“ + Ble ™+ ﬁsmﬂ
b x=Je*+e™+ Lsindt
¢ Will t)%(ll].itc as a sine wave with ru‘nplltudt, =5 and

2.1:—-(].inl:l_.;1' x+ 3

£ di
perio 5
Challenge
EFC . (x+a
1 =_II |
& ¥ +'i'1+.1:*’ Y= \1+22
2 a y=%+%+._l,lnx~§ b y=%~%+£lnx-%

CHAPTER 8
Prior knowledge check
1 y =202 +2000x
x+ 50
2 y=Ae*™ +8B
3 y=4sinx+ 2cosx + e*(-2cosx — 6sinx)

Exercise 8A

1 s=—tcost +sint +¢
Whent=0,58=0,50¢=0.
Soz.=%:>s=[1+1=1m

3 3

) -t

T2 2+8
a v=40-20e"
= 2111(2 + 1)
a Integrating factor is e, so equatinn becomes
ve = [te-tdt = v-t*’{c —~n“}
v=1whent=0=¢ _E‘ 50{:*-[3(" -1)
81.4ms"
No; veloeity would be over 13 million ms'.
6 a Integrating factor is (f + 4)*, so equation becomes

ot + 4 =9, sf(c+4]*d¢ —;% + 4P+ b
49(t + 4)5 - 2
T 25+ a)
t=0whent=0=¢=50176,
_49(t+4)°- 50176

b 200In2-100

= W N

=

= =

50

25(t + 4)*
b 17.3ms!
¢ Veloeity will increase without limit - unlikely to be
the case
7 a The 2.5 (em?hr') comes from 5% of the 50cm? gas

mixture being added.
The volume of the tank at time ¢ is (500 + 30¢) cm?,
s0 the amount of oxygen leaking out is

20 x —— —— em*hrl.
500 + 30¢
b 9.34em?
¢ e.g. The model should take into account the fact that
the oxygen does not mix throughout immediately on
entering the tank

2,5
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Exercise 8B

1 Simple harmonic motion
x=2c083¢ + sin 3¢

c
x=5c0s4t +zsindt b
Simple harmonic motion
&£ =-bx

r=5cos(y50) +2 ».-55111( '51)
xm

-
e o -e p T

(541

4
7

- .!IE 31 ||Iz
A qu(\ 2 )+ ! 73"1(\'2 i)
3.36 seconds

x=0, 18'3-".111[3 ) -1, 287mq(21)

am

3

The model does not allow for any changes in
amplitude over time.

Simple harmonic motion

.r 0.3 cos(10V21)

ﬁ V25, 0.3m

4.24ms* (3s.L) or 3y/2Zms!

% = cos(12.5) b 3t

x = 8cos(8/51¢) 25

0.3515(3 5.1
x=15¢0s(3/10¢) cm
0.688s, 15cm
Incorporate a damping effect, for example air
resistance. This could take the form of a factor
in the a formula which equals 1 at ¢ = 0, and
decreases down to zero as { — oo

Exercise 8C
1 a 2e*(cos2( +sin2¢)
b 0.0901 (3s.1)
¢ Lightly damped
2 Ged=2eW
3a e’ ((:05 5L+ LF sin »,@L)

V)
b '*'% or 1.40 (3s.1)

\"‘lt - l
- -t —h
4 a x=ule b ﬁ'zk

5a F=ma=-2v-6x=2a=2+%2+3x=0

b x= e":(cus(vllzl .'.) + T“'T-.-""l_l- sin(ﬂz-lc))

¢ —-0.459m (3 s.f)
d Maximum displacement will decrease exponentially

-l
- - - S - -

=

-.‘l
TP STeERrR oo TR

(light damping).
6 = —Ema 3+ L'-;1113£ + Eu:us.z
8 15 8
2U 33U 5U
7 EY =ikt _ =2kt
2RakT  2kT 6k
8 a cc]i_f- 30cost + 'l('_lsini.d;;: =-30sint + 10cost
i dax
:>2 * +3%% 4 ¥ = 100cost
de? dt
b x=Ae "+ Be’ + 30sin{ - 10cos!
¢ -34.00m
Exercise 8D

1 x=3(2+3/2)e™ +1(2 - 38/2)e™
y=1@4-y2)e% + 14+ /2)e ™

s

a xr=e'(Acost + Bsint)
y=1e'((B-2A)cost — (A + 2B)sint)
OR y = e'(Acost + Bsint)
x ==e"((24 + B)cost + (2B - A)sint)
depending on your method
b x=etcost+ 12sint), y = e (2cost - Hsint)

af -7 ( V1T ) ( V1T ))

@1 | —=sin —-cos|l—1t)] +1
('.11 2 2
=g:|Ccos ] ———sin !

J ( ( 2 v11 2

dx dy _d2x dx

a y=5E—I=}I SW_E
o288 g5 04(s8E -
v i T 0.5x + 0.4 ')di x)
dZx dx
=2 —-06—+0.18x=0
de? dt

b m*-06m+018=0=m=0.3+0.3i
Sox=e""Acos0.31 + Bsin0.3¢)

¢ y=0.1e""((5A + 158)cos0.31)

+ (6B - 15A)sin0.3¢)
t=0.17..., during 2018
441
Model seems reasonable for the first few years, but
becomes unsuitable in the longer term as x and y
oscillate, sometimes giving negative values.
_1dix, 3dx
de  2der 2dt’

=

-

oldz 3dx .1_(935 '
502d£2+2dt_ 2:.~'+2 d£+3xJ
dx+2dx+x 0=x=(A + Btle”
dt? _
‘é“‘-(ﬁ _A-Bljet =y = (.2.3”1 + Bl
When ¢=0,x=A=1andy=2B+1=2=B=2
Sox=(1+2t)e” and y = (2 + 2t)e™".

-2

x =0.677 litres, y = 0.812 litres

The amount of both chemicals tends to zero

de _1d%y 1 d% _ 2y
- =-4

dr 4 dH::' :

L]

- =-16
4 de e o
= i} = —4%y. This is SHM in the y direction.
x=4cosdt - 5sindl, y = 4sind! + 5cosdd

dr
Y= 100E+ 31 - 5000 = — = 100%% . 302
dx dx

dt dez dit
=>]UOF+ 3d—=001r— 0. n%[mod_xnx 5000]

d?x
—+00('—+00008—15
de?

&= 187.)4’149,'}.'1‘*5& &t

=

=

=

LI =025 = Ae-2 + Be-ut

¢ x tends to a limiting value of 1875 and g tends to a
limiting value of 625.
a y—i—f+ 2x -1 42—‘? §£§+2%
50%+2ﬁ? 4I+[%+2x—1)+2
g“f + E -6x=1

b x=Ae*+Be™ -1 y=Ae* - 4Be + 12
Model not suitable since for large values of ¢, the
amount of nutrients grows exponentially without

limit.

o

246 m Full worked solutions are available in SolutionBank. ﬁ
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Challenge 13 a x=Ut- -E;-rsin nt b -ZH—T ¢ %
96 owls and 4800 field mice. dx d2y
14 a ——=30cos! - 15sint, — = -30sin! - 15cos!
Mixed exercise 8 - da S
1a v=18-106" b 18ms" S"@“'_ i e
2 6 b x=Ae’ + Be? + 30sint + 15¢cos!
50 EN ¢ -29m
¥ By g 10_2£+5 b (109~25loS)mi= 53;6m 15 a x=eYAcos3t + Bsin3t) + 3cost
4 gms-l b x=2e'sin3t + 3cost
I T Ty e | ¢ When (=7, the first term in the expression for x
4 o8 : ’ ) is very small compared to the second, so can be
pu Eay gl bR 5 ignored. So x = 3cost, which has a distance of 6
1 64 8 64 between maximum and minimum values.
5a v=2t+In(t+1) b (2+3In3)m 16 a y=9%_ 20 dy _dix ,dx
6 a Integrating lactor is e ™, tiwn solve the differential di di e di
equation to get V= -4t - AL + 20e™ Sod% _odx _ 5. . (dx 21)
1162.2 ¢m? d:_ di
¢ Bacteria will reproduce without limit — build in = d?x bE +10x =0
some limiting/decay factor d.":' dt ‘ _
b Auxiliary equation has solutions m = 3 + i, so the

7 a The 1200 comes from 4¢ per incoming litre of

: = e : — B e ¥
water, per day. The fraction is from the leaking, equation has solution x = e*(Acost + Bsint).

which is the total grams x, times the proportion of fl g;a; (A + Byeost + (B - A)sind)
. . ca 200
the reservoir leaking out, which is —————— :
er iir leaking out, whi I"10000+IDD.: e 1113
b 7860g I The model predicts a huge amount of hedgehogs
¢ e.g The model should take into account the fact “’é“"“ the slugs die out so it might not be sensible.
that the contaminant does not mix throughout 17 a 39 _ Ei{ 4_‘1-":’ 0 .‘_jff_ codx g
immediately on entry. de der  de’ T dez T de
8 a Simple harmonic motion This has general solution x = (A + Bt)e™".
b General solution is x = Acos7{ + Bsin Tt p i Bet-{A+Blle'=y= %[(B + 3A4) + 3Bt)e”
Atrestat (=0 gives B =0, and A is the displacement Using the initial conditions, A = 10 and B = 30, so
of B from A. The period is then 27” (seconds) x=30te" + 10e and i = 30te" + 20e".

9 a Simple harmonic motion b 9 of organism M and 10 of organism NV

o [T ¢ The numbers of each organism tend to zero
b x=4cns(5,u|§£) 18 a 1x-£lg+-f,f- 1= dz _ 4% 4dJ
Period is 1.545 (3 s.1) 2 dt 3 dt - “de T3
Amplitude is (4 - 2.5)m = 1.5m dy 4 dy . (ﬂ 2. 1)
10 a x=2.161cos(5t) + 3.366sin(5(| dee ~3de 37 \de
b 2n :;._sz+1(1_‘}+1 ==
¢ The model does not allow for any changes in ad!, 3 dt
amplitude over time or the effect of oscillations in d -‘3’ b+ 7_ +y=9
the fisherman’s line, for example. . ‘ ;
11 a x=e*(Acos(tVn? - k) + Bsin{tyn? - k?)) b z= _EB b Ee_f- +10,y=3et-%04+9
b 2 ¢ As ([ becomes large e — (), 50 there will be
Vn? - k2 approximately 10 litres in tank A and 9 litres in
12 a Sulwng the equation gives x = e *(Acoskt + Bsinkt) tank B.
and — = ke ™((-A + B)coskt + (=B - A)sinkt) Challenge
W}19n£_0x Ud,nd((il—]rzﬂ s0A = OandB—% a i ﬁ:,)(:}fd_z‘(:__fdi:})(:re_a
§ . : dt X )
:Zn when P is instantaneously at rest, X = 300 when £ = 0 = ¢ = 300, $0 X = 300e-"
d—': = Ue*(coskt — sinkd) = 0 = tankt =1 ii 20 minutes

iii 600 —100e(3L + 5) or equivalent
b i x=-2ry=2x-yx0=V,y0)=0
d %4 = x = Ve, y =2V — &),
y=0=2x=y=p*=¢g*-e?
= t=1In 2 hours = 42 mins (nearest minute)
ii In 3 hours

s kt=(n+imneN

Haqe---
==
____M|:a:
=5
*%>
<*"q“’
by
==Y

0
Review exercise 2
1ar=2 b r=3secd
— 9. el _ T
c r_2n.35e[.(() 6)

2.7
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r=afl +cos

o
2

]

1
1
]
1
|
1
1
]
1
'

» 3\:"@[1
r="=—cosecd
P 1 S

4
=7

The circle and the cardioid meet whgn
a=all +cost) = cosf=0=0= :I:-’zf-

B (3,5
A=2x EL rzde
l‘zr«!de: j‘%;'zu + cos0)2dd
1] ]
= f.azﬂ + 2 cosfl + costd)de

= [iaz(] +2 (:usﬂ+%(‘,0529+%

- “Ef(_z cos i + %cnsZH + %)d(ﬂ

=a |25mb’+ 4:’-;|112|‘;'+ 5 L =a [
The required area is A less hall the circle

offp ) o 255

2a pijtial line

)d.q

%+2

)

6 a

3¢ Initial line

a? ., .-'P
E{4n + 9V3)

Let the smaller area enclosed by € and the half-line
0="he A,

- 9atm _ —{21%2 47 +9/3) - %27: - 343)

1
_9a?nr _a?n _9Y3a?_3a’z _9V3a? _ a?
4 2 8 q 8
Im A
Re
In Cartesian form: (x — 3% + (y + 4)* = 25
= (rcos@ - 31 + (rsing + 41 = 25
= rfcosf — 6rcosf + 9 + r?sin®f + 8rsind
+16 =25
= r#cos?d + sin®f) = 6r cosé + 8rsinf =0
= rieos?d + sin?d) = rl6 cosH — 8sind)
= r=[0cost - 8sind
63.3
Sl | i
M/_,_\ %
0 =
1 Initial line
=
g1 T, @

(0,667, 0.421) and (0.667, -0.421)

m Full worked solutions are available in SolutionBank. ﬁ
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9

10

11

12
13
14

16

17

r=sin2#

e v |

0 Initial line

b (0.943, 0.615)
a (x—.’i}’f+y2=9
x+vV3y=06
b b=

___________m|:1

-

¢ P.[s, W), Qo, 0)

3
14 1[4 220dp
A== r:dé==| % cos
2% 2";
= 4a2|‘;‘i[l + cos 44 df = 4a2[H+ %sin 48}:
8
=4a=(£-l)=lazm-2i
8 4]
9 . »
'8-?1'[]"
-1 5m x _V3
8 d=15 13 b 5-1
a Plda, 1.107), Hda, -1.107)
Gv‘s
b g m
2870w .2
[ —32 m
a jna?
a1, 2m) pfl_ _2r
b A‘(z“’ 3 )'H'(z“’ 3)
¢ ga
27V3 .,
d g ¢

e 113cm” (3 s.1)
a A:(Ea,—i),ﬁ:(éa,%)

2 3 2
_9ox3gginTo33
AB—2x2a51113— 5 ¢}

(93 - 4r)a?
9.07 cm?® (3 s.1)

A:(bBa, 0), B:(3a, 0)
(;;( 4q, -"?E) D{4a, %)

=2

- T - P

Initial line

¢ A =2x %fré dd = [ a*(3 + 2 cos 62 de
3 3

uzﬁjt") + 12 cosd + 4cos®6) dd
a

azj::lll + 12 cosf + 2 cos 26) do
3

a?[1160 + 12 sind + siuZQ]i = a?(

3
13, 3 5

y = - = N Wil " 6

A 2><2La{'i 2 cosf)?d

- QzIL (25 — 20 cosf + 4 cos26) df

. azL“{zr - 20 cosh + 2 cos26) di

227 13/3 )

2

- az[zw -~ 20sin0+ sinzu.@]“ - az(& ) 19¢3)

3 2
(227 133\ .[27x 1943
Arv sy =ae(Zr183) oo 2 193)
=%2{49?r+48..-"§]
18 iIn3 '
19 In({).In3
20 p=3,q=2
21 In,In7
! 1 11,3
22 x_glni, Emg
23 a k=v3 b 0,-In3
SV o T eI+e-1'3_ oF — aty 2
24 a cosh?x - sinh2x ( ) ) ( ; )
_e'“+2+e-3f—[eﬁx_2+e-z;}_i_l
= - -4
h k:—].a:z
25 a 2(:05]121'.—1=2(§x_.“.'.§'_x)‘_1=eh+2+e-2f_
2 2
2 2
=w%=cns}12x

b +In(3 + v8)
26 a

4cosh®y - 3 coshx = 4(

2 2

1

er+ e'f]ﬂ _ 3(91 + l-,‘“")

_es3er4JeT+e M Jer+3eT eirqe

2 2 - 2
= cosh 3x
b In(vZ+1)

27 a coshA coshB - sinh A sinh B

= (ﬁ-“ Jrze'-"')(e“ Ea--“] B (e*‘ Ee---‘)(e” —ze-B)

= l(e..qm 4 gy pA-B | a-A-B _ pAHl 4 a-A+l
4

o e;\—ﬂ s e-_-l-ﬂ'l

= %{2&}"““" + 2e4-8) = S % cosh (A - B)

2

b coshx cosh1 - sinhx sinh 1 = sinhx
coshx cosh 1 = ginha(1 + sinh 1)

e+ e
Rorifor s coshl 2 e+ el
1 +sinh1 e—pg-l 24p-—p-l
I +—
2
= gL
e+ 2e-1

2.0
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28 a

29 a

30 a

b

31 a

32 a

2650

e —p

Let arsinhx = x = sinhy =

= 2r=eY-e¥=eW-2xef-1=0

. ! 2 P——

.Z:r+‘,-f:x + 4 RS v oo
2

= y=lx+/22+1)

arsinhlcot® = Inlcotd + V1 + cot?4]

= ef=

= Inlcot# + cosec 0

2(:-.';5ZE
:ln(cns_ﬂ:}- 1) =1 < 2 ; =ln(cut%)
Lot 2 sinEms{E
Let y = artanh x
e -1
Xx=tanhy ==
Y=o
; 1+x 1+x
Y= T =
- - =il ln(l —x]
= y:%lu(}ii) for x| <1
- A ,
! : iy =artanhx
| i
| 0 P
-1 1 x
t !
i |
| |
1 ¥
7 3

l“{.1 - \}:__‘tz) - 1n(1 + \1__“)

_ ll‘l(l -~ \i - Iz](l + \:]c —IEJ

— -y
" m(l_ﬂl_x’

x2

]
):ln%:ln]:ﬂ
x

sl ; 1 ev+ew 1
Y= a.rcn&.h(z) = coshy = == 5 g
= xel+rxed-2=0=xe¥-2e¥+2=0
2+V4-4x? _1+V1-x?

2x x
1441~ 12)

=% alf =

==-y=ln(_
3+ '.fﬁ)
tln(—z

cosh 30 = 4 cosh?f - 3 coshé
cosh 58 = 16 cosh™ @ - 20 cosh*# + 5 cosh ¢
+0.96

21 23 2nk ok @lkt 4 pln ]z
{:Ush2x=e + e =e + & - S
2 2 2
= l(;;z J_) S
2V k) T ke
128
289

33

34

35

37

38

39

a
b

a

b

a

r= —
sinh#  df

J

a

-

$In(2 +V3)

tanh?4x =1 - sech®4x =1 -
V3

2

E]
"l

Asx = 0, tanh4x =

At x = {Inf2 +v3), B

y=-x+tanhdx=-1Inl2 + 3] + %
=12V3 - In(2 + V3))

64
15
24Jf—F| = Bl

(2n - 1N
1 -2

224+ 1043, 0445

b 0.0029%

a dx _ acoshd
sinh=¢

_acoshfl

1

f——— = w f T
xvx? + a? f a?V1 + sinh?#

sinh?¢ o1
5l AT —Ef 1d6

sinh2¢

1

a

y = artanhx = tanhy = x

Differentiate implicitly with respect to x
dy_ 1 _ 1 _ 1
dr sech?y 1 -tanh?y 1-x2
xartanhx + 3In(1 - 2?) + A

A+c= ~%arsinh(g] +€

dy
2 —
sech ydx =k

s s i - @y
Let y = arsinhx = x = sinhy = gces

= 2r=ef -l = e - 2xel-1=0

2x +V4x7+ 4
2

= y=Inlx+VxZ+ 1)

= g¥ = =x+vVx2+1

y = arsinhx = sinhy =x
Differentiating implicitly with respect to x
dg dy
cnsl1y—J:1 ., SRS - _1_ =5 1_
dx dx coshy /1 +sinh’y V1 +22
= diéarsinh a)=(1+x2
x

d 1
& 2arsinhx(1 + x?=

y = larsinh x)?,
d2y
dx?

X
= (1 +x¥%)

= 2(1 + 22! - 2xarsinhx(1 + 22

d®y  dy
—+r—-2
dx?  dx

= 2 - 2xarsinhx(1 + 22~ + 2zarsinhx(1 + 227 - 2

=90

In(1++2)-v2 +1

p = 2! q = 1‘ r= 4

2x + 1)
2

i arctan( +e

f—z—dx = f—z_—dx
vdxe+4x+ 5 J(2x+ 1) +4
dx

Let 2x + 1 = 2sinh f = 4o = cosho

—coshd dé = [1dd

JZ2e+1)2+ 4 vdsinh?d + 4

=f+c= arsinh(z—x;—l] +C

M Full worked solutions are available in SolutionBank. ﬁ
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=T - -]

61 a

Lr]

62 a

63 a

64

=

257

It

It

A
y

2
Acos3dx + Bsin 3x + 21 cos 3x
y=11

+ 2x)cos 3x

-~

WA

2
y = Kt?e? % = 2Kte’ + 3.&‘;235",% = 2KeM

+ 12Kte™ + 9K 2 eM
Substituting into the differential equation
2Ke3 + 12Kte™ + 9K12e™ - 12Kt e - 18Kt2e™
+ OKiZed = 4¥
=2Kk=4=K=2
21%e% ig a particular integral of the differential
equation
Yy =(A+ Bt + 21%)e”
y=1(3 - 8L+ 2"

65 a

66 a

WA
b
5 —E]F e%)
¢
. >
0 N1 t
2
r=Aet + Be? 4142
r=e24t+2
dx

; 1
—= = =2p-2 = ==
i Zedt+1=0=1 2||‘|2
%i; =4e2 > 0, for any real ¢
So stationary value is a minimum.
=4
When ¢ =%ln2 = x=§+%ln2
The minimum distance is é{s + In 2).

A=

e

= (1 +t+ 3t )e
dx_ o 1) . 1.,
=y (1 + thet - (1 + L+ Ei.f)e i= —Et-e
for all real ¢
When £ = 0, x = 1 and x has a negative gradient for
all positive {, x is a decreasing [unction of ¢. Hence,
fort=0,2=1.
k=3
y=Asinx + 3x
Atx=m, y=Asinm+3x =37
This is independent of the value of A, Hence, all

curves given by the solution in part a pass through
(m, 3m).

67 a

b

@={1 cosx + 3
dx 4
Atx=1, a-’:m:u.—-»fs 3

This is independent of the value of A. Hence, all
curves given by the solution in part a have an equal

gradient of 3 at x = —?25
Y =3x- -3-?5 sinx

2
d
For a minimum _y_ 3 - ﬁmax 0
dx 2

Cosx = 2 s =X = ar('c'(‘:‘iJ
d?y 3«
P e sinx .
In the interval 0 = x = g 22 > () = minimum
R
sin?x=1-cosy=1-4 -7-4
w2 w2
T VT2 -4
In the interval 0 = x = £, sinx = =
2° w2
arorns 2 3.2
y=3 d.I'LL(Jb:_?‘-E\-TT -4
,_120-¢ (120-¢)? 3
S= 4 600 b 95kg
Three-quarters of the nutrient = 75m,

At time {, the nutrient consumed is 5(m — )
Tomy = 5(m — my) = m = 16m,

Rate of increase ol mass = 4 x mass x mass of
nutrient remaining

%—T = um(100my, = 5m + Smy) = Spm(21m, — m)

“35‘* Spmi21my, — m)

i 1

Spdt = J T ——
f5u m(21mg, — nm) o

Using partial fractions

1 1 (i i 1
m(21my —m) 21mn 21 mg —m

1
= = [21 \m " 2 my - m) o

= 105umyt =Inm - In(21 my — m) + ¢

When ¢ =0, m=m, = 0=Inm, - In20m, +c

Om
= ¢=In20m; - Inmy=In——" = In 20

In(21 my = m) + In 20
20m
N n(21mIJ = n:-'.)
Froma, when t =T, m = 16m,

320
105umy T = ln( - ’”“) - In64

= 105pmyt = Inm -

my
de de v
I —p=t=>——-==
dt =dp

1

Integrating factor is el-jor = gt = pin} = -i—

tdr 2t die) T
v_1,,_
=>?_f7d£_ln£+c
=v=HInt +¢)
8.77ms'(3s.f)

1de @ 1 d{u) 1

m Full worked solutions are available in SolutionBank. ﬁ
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When ¢ =%ln2 = x=§+%ln2
The minimum distance is é{s + In 2).

A=

e

= (1 +t+ 3t )e
dx_ o 1) . 1.,
=y (1 + thet - (1 + L+ Ei.f)e i= —Et-e
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This is independent of the value of A, Hence, all

curves given by the solution in part a pass through
(m, 3m).
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b

@={1 cosx + 3
dx 4
Atx=1, a-’:m:u.—-»fs 3

This is independent of the value of A. Hence, all
curves given by the solution in part a have an equal

gradient of 3 at x = —?25
Y =3x- -3-?5 sinx

2
d
For a minimum _y_ 3 - ﬁmax 0
dx 2

Cosx = 2 s =X = ar('c'(‘:‘iJ
d?y 3«
P e sinx .
In the interval 0 = x = g 22 > () = minimum
R
sin?x=1-cosy=1-4 -7-4
w2 w2
T VT2 -4
In the interval 0 = x = £, sinx = =
2° w2
arorns 2 3.2
y=3 d.I'LL(Jb:_?‘-E\-TT -4
,_120-¢ (120-¢)? 3
S= 4 600 b 95kg
Three-quarters of the nutrient = 75m,

At time {, the nutrient consumed is 5(m — )
Tomy = 5(m — my) = m = 16m,

Rate of increase ol mass = 4 x mass x mass of
nutrient remaining

%—T = um(100my, = 5m + Smy) = Spm(21m, — m)

“35‘* Spmi21my, — m)

i 1

Spdt = J T ——
f5u m(21mg, — nm) o

Using partial fractions

1 1 (i i 1
m(21my —m) 21mn 21 mg —m

1
= = [21 \m " 2 my - m) o

= 105umyt =Inm - In(21 my — m) + ¢

When ¢ =0, m=m, = 0=Inm, - In20m, +c

Om
= ¢=In20m; - Inmy=In——" = In 20

In(21 my = m) + In 20
20m
N n(21mIJ = n:-'.)
Froma, when t =T, m = 16m,

320
105umy T = ln( - ’”“) - In64

= 105pmyt = Inm -

my
de de v
I —p=t=>——-==
dt =dp

1

Integrating factor is el-jor = gt = pin} = -i—

tdr 2t die) T
v_1,,_
=>?_f7d£_ln£+c
=v=HInt +¢)
8.77ms'(3s.f)

1de @ 1 d{u) 1

m Full worked solutions are available in SolutionBank. ﬁ



do
68 a=—=¢p2
a

v=fe¥dt=1e%+A
Whent=0,0=0=0=
Hence v = E{P.JI -1

+A=A=-

o=

1
2

69 a v=13- 307" b 11.2ms" (3 s.f)
¢ 13
70 a 29--!!—1 b J(1-In2)m
de 3v 49
Padiezh =9.8(t oo .

71 a (t+3] !+'~]u 9, {+3}=.»':“+H3 5
Integt‘aung factor P;IHR = @it = Bieed = (E+ 3)3
=>[£+3j‘%+3v!£+3]3— 494 3p
#E[HB t’}~—1!+%]’
= [t + 3)%¢ 9{.’+3F*‘+r

> _ ___gg4, 3969
Wllenﬁ-O.r;—0:>0u20x3 +e=c= =0
49 3969
I b 2
=>[£+3lv_20h£+4} 20
; 49(t + 4)% - 3969
34— B 1 hent
= [t+3)Fv= 20
« 4
f,.i_r=M2_(;:_3q(,g
2010t + 3)3
b 2] ek

(& The speed continues to increase as ¢ increases.

This is unlikely 10 happen - terminal velocity, ete.

Volume, ml of distilled water in the bottle after ¢

minutes is given by 400 + 401 — 30¢ = 400 + 10t
x

400 + 10t

72 a

Concentration of acid afier { minutes=
Rate acid in = 4 ml per minute

Rate acid out = & 3z

A0 B 10 40 +%
Hen(’.egzél- 3x

de 40 +¢
22.3 ml (3 s.))
It is unlikely that the acid disperses immediately
s0 this could be lactored in.
Simple harmonic motion
x=03cos(71)

Period of motion = 2—; Maximum speed = 2.1m s

0.791m

2.48 minutes

Boat is unlikely to continue oscillating with such
regularity.

3 sin 2l - be ' sint

I=6e'sint - 6e'cost + 6 cos 2t

oo

73

74

SRR o8 o

=]

T o — e T {1 T
l=—, 2= ﬁ(e 48ins — e 2c08= + cns—):O
-+ 4 4 2

- P eomes to instantaneous rest when [ = %
¢ 1.07m(3s.5)

T
76 a A=0 B=Y b L
77 e-“( v cos 3kt - =i sin 3}:!) + WVt ———
5k 15&
78 a 0.3e*-0.6e"+0.3

u

b r=-12e%+12e2=12e%e¥-1)
eX>=1foralli =0
= x > 0 throughout the motion (expect for = 0)
i.e. the particle continues to move down through the
liquid throughout its motion.

79 a Differentiating (1) with respect to f:
d’x dx dy
7o) =0. I-—~ 0. 1—&-
Substituting (2): d 2 64 z" 0.1(~0.025x + 0.2y)
dy dx
e []1d - 0.0025x + 0.02y
dix dx (d )
— =0.1—=-0.00 0.2—-0.
=:-dId ld 00252 + zd. lx
d*x dax dx
— =0.1== - 0.0025x + 0.2—= - 0.02x
di® di dt
o &z dx
dté —03T+0022ax 0
b x=Apl15t 4 Bie16t
¢ y=0.5Ae"1% 4 0.58te™15 + 10Bel 15
d 237
e The number of angler fish and angel fish will both
increase without limit so the model is unlikely to be
suitable for large .
: 5 ith resoeet to g T X = pdx 3
80 a Differentiating (1) with respect to ¢: Frr e 2 5 ¥ a3
Substituting (2): d :r =2-—= g‘r +dr-y+1
d?x dx de .
oy O SOE Ay [_-zx—1]+1
de? dt dt
dixy _ dx
=———=—"+bx+2
de? ~ dt =
dix  dx
= 3 " dt bx =2
85 :r - _l 85 £l 2 l
b x= 3¢ - 8e 4= —e¥ + 32e 3

¢ As( gets large, the e term dominates and suggests
the amount of gas increases without limit in both tanks.
This is unlikely to be the case, for example size of tank
will be a limiting factor.

Challenge
1 Letn =1: The result M" = M becomes M' = M, which is true.
Assume the result is true for n = k.
That is
; osh?x  cosh?x
M*:M:(ms : sh?. )
-sinh?x —-sinh®x
MEH = MEM = [ cosh?x  cosh?x )( cosh?x  cosh?x J
—sinh?x —sinh?x/\-sinh®?x -sinh?x

. cosh*x - cosh?xsinh?
Mi:M:(nshx cosh?xs x

cosh*x — c:nshgxsmhzx]
sinh*ax — cosh®xsinh?x

sinh*x — cosh®xsinh®x)
B ( cosh?x(cosh?x - sinh®x)

cosh?x(cosh?x - sinh?x) )
sinh?x( — cosh®x + sinh®x)

sinh®x( - cosh®x + sinh?x)

cosh?x

_ ( cosh?x
-sinh?x

—sinh®x
and this is the result forn =k + 1.

The result is true for n = 1, and if it is true for n = &, then
itis true forn =k + 1.

By mathematical induction the result is true for all positive
integers n.

2572



dy dzx | d%x

28 =
de dez de?
mi-1=0=m==z1=x=Ae’'+Be!

y-—d—-Apf Be-t
Wlmnt—[}.r =A+B=landy=A-B=0,s0

A=B=1
Sox= %{ef +e7) = cosht and y = j(e' - &) = sinht.
do__a ap
de dez  de
dﬂp dp dp dip _dp

v -_—
B T T TR TP R T
m2-2m+2=0=m=1=isop=e(Acost +

Bsint)
dp ) ;
h = ¢'(A cost + B sint) + e!(B cost — A sint)

g=p- i—f = e!(-Beost + Asint)

Wheni=0,p=A=1landg=-B=1,50A=1and
B=-1.

dr _ r = e'lcost — sint) + 2e'(cost + sind)

de = e'(3cost + sint)

Use integrating factor e,

r=e'[(3 cost + sint)dt = e(3 sint - cost + C)
Whent=0,r=C-1=1= €=2andso

r = e'(3sint — cost + 2)

dx = dr

3  x=rcosf) = == = —rsinfl + =—cosf!
de dﬁ‘

l
Iy = rsinfl = Hé = reosd + Eg"mg

rcosé + d—sinFJ

So [ has gradient = tan(o + 0)
—rsinf + % cos0
dg d
rcos + SLsing
. tana +tand de
Thus =
1 —tana tand . d

—rsind + YLeosp
de

Rearrange and cancel to get

—rsinif + == dr

cos*f tana = reos* — % tana sin®d
. dr - o
= a0 fana = r = tana = ﬂ
de
Exam-style practice: Paper 1
1 a 11200em*

b Does not take into account the thickness of the clay.

2aa=%
d=|2><1+3><4+—1><?—1CI|=3»"'14_ :‘I=-3—
V224 324+ (=1)2 14 14
b -1
¢ 43.9°
T 2 2 1 2x1 2x 1%
Ja Lletrn=1:{0 1 2]|=[0 1 2x11
0 0 1 0 0 1

which is true.
Assume the result is true for n = k.

1 2k 2k
n=k(0 1 2k

0 0 1

_

1 2 2\f1 2k 2k*%
n=k+1:({] 1 2)0 1 2k

00 1/\0 0 1
1 2k+2 2k2+4k+2
=10 1 2k + 2
0 0 1
1 2k+1) 21k +1)?
=10 1 20k + 1
0 0 1

and this is the result forn = & + 1.

The result is true for o = 1, and if it is true for n = k,
then it is true forn =& + 1.

By mathematical induction the result is true for all
positive integers n.

i 7

4 -2 —(k+4) 8 )
ii —{ -2 -1 8
14-2k 4 3k+1 -2k+1)

Z=cosf +ising
zt = (cosf + 1 sinf)*
zt = cosnf + 1 sinnd
in- = cosnd - i sinnd
z
1 =
M - —=2sinnf
z
4

} 1., . 1{. 1
8sintf = 5[21 sin )= -z-{z - :,:-J

l(z" 4zd+ﬁ—i,+l)
2 i L

= %ﬁz cos4d — 8 cos 26 + 6)

= cos4f — 4 cos26 + 3
Volume = 500 + 15¢

Concentration of sugar =—~*
O SUBAT =500 + 15¢
Rate of sugar into mixture = 30 x 25 = 750
e V1R x 3
Lose sugar at ratle 1..500 ~ 150 100 + 31
dx 3x
== =750- ———
~dt 100 + 3¢
60635¢g

Rate of leaking could vary with volume of oil, or
model could take into account the fact that the
sugar does not disperse throughout the vat on entry.
v+ 121 + (y + 5) = 169

{rcos@ + 12)2 + (rsind + 5)2 = 169

ricos?d + 24r cosf + 144 + r? sin28 + 10r sinf + 25
ré = —24rcosf - 10r sing

r=-2(12 cosf + 5 sind

25/ m Full worked solutions are available in SolutionBank. ﬁ



u

b
|z + 12 + 51| = 13 o

—1:2 =91

-10

argz = —"}—TT

c 252

7 a 0.3x 2’3 02# 0.3 x 0.3% + 0.3 x 0.2y + 0.3
: L +0.2x0.2x - 0.2 x 0.3y

d*f dx

=0.3=-1 Y — 0.

3 Uid 0.3+ 0.2%x - 0.3

d®x d.1 dy dax dx
=0.3

de? FTM TR TR

-10.32+0.2%x - 0.3

d2x dx
——-06-—+0.13x+0.3=0
de* de !
100ﬁ’f ﬁod’w 132 + 30 =0
= @l 30
b e #A cos 0.2t + B sin0.2¢) - )l
0.3 20
¢ y=e"¥Bcos0.2t-A smGZrJﬂﬁ
03160 85 30
d x=¢ [13(0502£+n€1n{)2t) S
= i BB i 1B ) 20
y=e [131,050.25 13 sin0.2¢ 1

¢ Concentration on right side predicted to be negative
which isn't possible. Therefore, model is not suitable.

Exam-style practice: Paper 2
1ap=7¢g=25
Using partial fractions,
1 o 1
(r+20r+4 2r+2) 20 +4
Using the method of differences,

n n

1 ~ 1 1
2 =2 T2+ 4)

e+ 20r+4) I 2r+ 2)
=0 2% S 1 _  nlfn+25
6 8 2n+3 2n+4 24n+3n+4)

b Letn=1:11)= 2%+ 3% = 35 which is divisible by 7
Assume the result is true for n = k.
n o=k flk] = 282 4 324+1jg divisible by 7
n=k+1:0k+ 1) = 263 4 3263 = 2(2he2) 4 3232441
= 2(252) 4+ 9(324+1)
= 2(2042) 4 2(326+1) 4 T(32k+1)
= 2{(k) + 7(3#+1) which is divisible by 7 and this is
the result for n =k + 1.

U1 o W

O

The result is true for i = 1, and if' it is true for n = k,
thenitistrue forn=F%L + 1.

By mathematical induction the result is true for all
positive integers n.

a 1-4i
b 1+£4i2+i
¢

Im;;
54
4- 1+ 4i
3_
2
14 241
T T T T »>
-4 -2 0 2 4 Re
-17 21
—2
-3
-4 M -4i
-5
3.42(3s.k)
a 2x+4xd- b b 2.754 x 10% (4 s.I)
1 ; 1
wadr = u_gf; wradx = lim[3 arc'langzjl
1 i
= limarctan® = 2 x T =T
5 imarc ans 5%
k=95
a 0722 b 2722
6/14
7
a (-Bsint - costl+ 2B cost - Csint)

+ 3A +Bsint + C costl

=21+ 15 cost
208 = Clsint + 2(B+ Clcost + 34 =21 + 15 cost
34 =21
B-C=0 !, A-7,B=¢=12
Bag=10 8
=52

-
:'x=7+%"[sint + cos f)

:
b x=7+—1:ftsin.!+cns£]

-‘( 1992 GinlvZ o) + Tms[\ 2 t!)
¢ The flow Wl“ stabilise and oscillate evenly about

x="7.

250



acceleration 171, 175
amphtude 176
angular velocity 175
arccos x, dilferentiating 63
arcosh x
definition 123
dilferentiating 131
graph 123
integral for 135
in terms of natural
logarithms 124
arcsin x, differentiating 62-3
arctan x
differentiating 63, 64
Maclaurin series 44
areas enclosed by polar
curves 109-11
arsinh x
definition 123
differentiating 131
graph 123
integral for 135
in terms of natural
logarithms 124
artanh x
definition 123
differentiating 131
in terms of natural
logarithms 124
auxiliary equation 154, 180
average value see mean value

binomial expansion 40
boundary conditions 150, 153
using to find particular
solutions 162-4

caleulus methods 52-76
differentiating inverse
trigonometric
functions 62-4
improper integrals 53-6
integrating with inverse
trigonometric
functions 65-7
integrating using partial
[ractions 69-72
mean value of function
58-61
cardioid 106, 109
Cartesian coordinates 101, 102
Cartesian equations 103
centre of oscillation 175
circles 104, 105
complementary function
(C.F) 157, 159-61
complex conjugate roots 154
complex numbers 1-30
division 5-6
exponential form 2-4
modulus-argument form 2
multiplication 5-6
nth roots 20-3, 25-6
solving geometric
problems 25-6
sums of series 16-18
compound functions, series
expansions 44-6
convergent integrals 53-6
convex curves 107, 115
cosnd 11-14
cos x, Maclaurin series 44
cos'd 12-14

254

cosech x, definition 120
cosh x
addition formulae 126
definition 120
differentiating 130
as even function 121
graph 121
integrating 135
cosh™ x see arcosh x
coth x, definition 120
critical damping 180, 181
Curves
sketching 104-8
see also parameltric curves;
polar curves

damped harmonic motion 180-2
damping lorce 180
de Moivre’s theorem 810
derivatives
first 38
higher 38-9
second 38
dilferential equations
coupled first-order linear 186-8
first-order 148-51, 171-4
general solution 154, 159
linear 153
methods in 147-69
modelling with see modelling
with differential equations
second-order
homogeneous 153-6
second-order non-
homogeneous 157-61
using boundary
conditions 162-4
differentiation
hyperbolic functions 130-2
inverse hyperbolic
functions 131-2
inverse trigonometric
functions 62-4
‘dimple’ shaped curves 107, 115
displacement 171, 175
divergent integrals 53-6
division, complex numbers 5-6
‘dot” notation 175

¢', Maclaurin series 44
‘ege’ shaped (convex) curves 107,
115

Euler'’s idenuty 2
Euler’s relation 2
even functions 121
exponential form 2-4

forced harmonic motion 182-4
functions, mean value 38-61

geometric problems, solving 25-6
graphs, hyperbolic functions 121-
2

half-lines 104, 105
harmonic motion

damped 180-2

forced 182-4

simple (S.H.M.) 175-8
heavy damping 180
homogenous systems 186
hyperbolic cosine see cosh
hyperbolic functions 119-46

dilferentiating 130-2
equations involving 127-8
graphs 121-2
identities 125-7
integrating 135-9
introduction to 120-2
inverse see inverse hyperbolic
functions
hyperbolic sine see sinh
hyperbolic tangent see tanh

improper fractions 71

improper integrals 53-6

initial line 101

integrating {actors 149-51

integration
hyperbolic functions 135-9
improper integrals 53-6
with inverse trigonometric

functions 65-7

using partial fractions 69-72

interval 53

inverse hyperbolic

functions 123-5

dilferentiating 131-2

inverse trigonometric functions
differentiation 62-4
integrating with 65-7

light damping 180, 182

limit notation 54

In(! + x), Maclaurin series 44
loops 106, 110

Lorenz lactor 48

Maclaurin polynomials 41
Maclaurin series 40-2. 44
mean value
attaining 76
of function 58-61
method of differences 32-5
modelling with differential
equations 170-95
coupled first-order
simultancous 186-8
damped harmonic
motion 180-2
first-order 171-4
forced harmonic motion 182-4
simple harmonic motion
(SH.M.) 175-§
modelling with volumes of’
revolution 87-§
modulus-argument form 2
multiplication, complex
numbers 5-6

nth roots
of complex numbers 20-3,
25-6
of unity 21,25-6

odd functions 121
Osborn’s Rule 126

parametric curves, volumes off
revolution 83-4

partial fractions, integrating
using 69-72

particular integral (P1.) 158,
159-61, 182

period 176

polar coordinates 10018

polar curves
areas enclosed by 109-11
sketching 104-8
tangents to 113-15
polar equations 103-4
pole 101
predator—prey model 186
product rule 149

ratio test 44
regular polygons 25-6

sech x
definition 120
graph 145

sech?x, integrating 146
sector, area 109
separating the variables 148
series 31-51
convergence 44
expansions of compound
functions 44-6
higher derivatives 38-9
Maclaurin 40-2, 44
sums of see sums of series
shell, cross-section 112
simple harmonic motion
(SHM,) 175-8
sinnf 11-14
sin x, Maclaurin series 44

sin'tl 12-14
sine wave 176
sinh x

addition formulae 126
definition 120
differentiating 130
graph 121
integrating 135
as odd function 121
sinh™ x see arsinh x
spirals 104, 105
sums of series
complex numbers 16-18
method of differences 32-5

tangents
parallel to initial line 113-14
perpendicular to initial
line 113, 114
1o polar curves 113-15
tanh x
definition 120
differentiating 130
exponential form 120
graph 122
integrating 136
tanh' x see artanh x
trigonometric functions
differentiating inverse 62-4
integrating with inverse 65-7
trigonometric identities 11-14

unity, nth roots o’ 21, 25-6

velocity 171,175

volumes ol revolution 77-92
around x-axis 78
around y-axis 81
modelling with 87-8
of parametric curves 8§34



